Skip to main content
Log in

3D-QSAR study of hallucinogenic phenylalkylamines by using CoMFA approach

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The three-dimensional quantitative structure–activity relationship (3D-QSAR) has been studied on 90 hallucinogenic phenylalkylamines by the comparative molecular field analysis (CoMFA). Two conformations were compared during the modeling. Conformation I referred to the amino group close to ring position 6 and conformation II related to the amino group trans to the phenyl ring. Satisfactory results were obtained by using both conformations. There were still differences between the two models. The model based on conformation I got better statistical results than the one about conformation II. And this may suggest that conformation I be preponderant when the hallucinogenic phenylalkylamines interact with the receptor. To further confirm the predictive capability of the CoMFA model, 18 compounds with conformation I were randomly selected as a test set and the remaining ones as training set. The best CoMFA model based on the training set had a cross-validation coefficient q 2 of 0.549 at five components and non cross-validation coefficient R 2 of 0.835, the standard error of estimation was 0.219. The model showed good predictive ability in the external test with a coefficient R 2pre of 0.611. The CoMFA coefficient contour maps suggested that both steric and electrostatic interactions play an important role. The contributions from the steric and electrostatic fields were 0.450 and 0.550, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nichols DE (2004) Pharmacol Ther 101:131

    Article  CAS  Google Scholar 

  2. Krebs-Thomson K, Paulus MP, Geyer MA (1998) Neuropsychopharmacology 18:339

    Article  CAS  Google Scholar 

  3. Nichols DE (1981) J Pharm Sci 70:839

    Article  CAS  Google Scholar 

  4. Gupta SP, Singh P, Bindal MC (1983) Chem Rev 83:633

    Article  CAS  Google Scholar 

  5. Clare BW (1990) J Med Chem 33:687

    Article  CAS  Google Scholar 

  6. Clare BW (2002) Computer-Aided Mol Des 16:611

    Article  CAS  Google Scholar 

  7. Schulze-Alexandru M, Kovar K-A (1999) Quant Struct-Act Relat 18:548

    Article  CAS  Google Scholar 

  8. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  9. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  10. Song MH, Breneman CM, Sukumar N (2004) Bioorg Med Chem 12:489

    Article  CAS  Google Scholar 

  11. Kennard O, Giacovazzo C, Horn AS, Mongiorgi R, Riva di Sanseverino L (1974) J Chem Soc Perkin Trans II 10:1160

    Article  Google Scholar 

  12. Hu WX, Yun LH (1992) Chin Chem Lett 3:271

    CAS  Google Scholar 

  13. Pauling P, Data N (1980) J Pro Natl Acad Sci USA 77:708

    Article  CAS  Google Scholar 

  14. Tripos Inc. (2005) Sybyl 7.1. Manual, St. Louis, MO

  15. Chambers JJ, Nichols DE (2002) J Comput-Aided Mol Des 16:511

    Article  CAS  Google Scholar 

  16. McLean TH, Chambers JJ, Parrish JC, Braden MR, Marona-Lewicka D, Kurrasch-Orbaugh D, Nichols DE (2006) J Med Chem 49:4269

    Article  CAS  Google Scholar 

  17. Glennon RA, Young R, Benington F, Morint RD (1982) J Med Chem 25:1163

    Article  CAS  Google Scholar 

  18. Domelsmith LN, Eaton TA, Houk KN, Anderson GM, Glennon RA, Shulgin AT, Castagnoli N, Kollman PA (1981) J Med Chem 24:1414

    Article  CAS  Google Scholar 

  19. Braun U, Braun G, Jacob P III, Nichols DE, Shulgin AT (1978) NIDA Res Monogr 22:35

    Google Scholar 

  20. Parker MA, Lewicka DM, Lucaites VL, Nelson DL, Nichols DE (1998) J Med Chem 41:5148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Program of Beijing Municipal Government and the Scientific Research Common Program of Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., An, L., Hu, W. et al. 3D-QSAR study of hallucinogenic phenylalkylamines by using CoMFA approach. J Comput Aided Mol Des 21, 145–153 (2007). https://doi.org/10.1007/s10822-006-9090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9090-y

Keywords

Navigation