Skip to main content
Log in

Wetting/dewetting transition of two-phase flows in nano-corrugated channels

  • Published:
Journal of Computer-Aided Materials Design

Abstract

A lattice version of the Boltzmann kinetic equation for describing multi-phase flows in nano- and micro-corrugated devices is reviewed. To this purpose, the Shan-Chen Lattice Boltzmann model [Phys. Rev. E 47, 1815 (1993)] for non-ideal fluids is extended to the case of confined geometries with hydrophobic properties on the wall. This extended Shan-Chen method is applied for the simulation of the wetting/dewetting transition in the presence of nanoscopic grooves etched on the boundaries. This approach permits to retain the essential supra-molecular details of fluid-solid interactions without surrendering -in fact boosting- the computational efficiency of continuum methods. The method is first validated against the Molecular Dynamics (MD) results of Cottin-Bizonne et al. [Nature Mater. 2, 237 (2003)] and then applied to more complex geometries, hardly accessible to MD simulations. The resulting analysis confirms that surface roughness and capillary effects can promote a sizeable reduction of the flow drag, with a substantial enhancement of the mass flow rates and slip-lengths, which can reach up to the micrometric range for highly hydrophobic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansumali S. and Karlin I.V. (2002). Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 66(2): 026311

    Article  CAS  Google Scholar 

  2. Baudry J., Charlaix E., Tonck A. and Mazuyer D. (2001). Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir 17(17): 5232–5236

    Article  CAS  Google Scholar 

  3. Benzi R., Biferale L., Sbragaglia M., Succi S. and Toschi F. (2006). Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74(2): 021509

    Article  CAS  Google Scholar 

  4. Benzi R., Biferale L., Sbragaglia M., Succi S. and Toschi F. (2006). Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows. J. Fluid Mech. 548: 257–280

    Article  Google Scholar 

  5. Benzi R., Biferale L., Sbragaglia M., Succi S. and Toschi F. (2006). Mesoscopic two-phase model for describing apparent slip in micro-channel flows. Europhys. Lett. 74(4): 651–657

    Article  CAS  Google Scholar 

  6. Benzi R., Succi S. and Vergassola M. (1992). The lattice boltzmann-equation—theory and applications. Phys. Report 222(3): 145–197

    Article  Google Scholar 

  7. Bhatnagar P.L., Gross E.P. and Krook M. (1954). A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3): 511–525

    Article  CAS  Google Scholar 

  8. Bocquet L. and Barrat J.L. (1993). Hydrodynamic boundary-conditions and correlation-functions of confined fluids. Phys. Rev. Lett. 70(18): 2726–2729

    Article  Google Scholar 

  9. Boghosian B.M., Yepez J., Coveney P.V. and Wager A. (2001). Entropic lattice boltzmann methods. Proc. R. Soc. London A 457(2007): 717–766

    Article  Google Scholar 

  10. Briant A.J., Papatzacos P. and Yeomans J.M. (2002). Lattice boltzmann simulations of contact line motion in a liquid-gas system. Phil. Trans. R. Soc. Lond. A 360(1792): 485–495

    Article  CAS  Google Scholar 

  11. Chen S. and Doolen G.D. (1998). Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30: 329–364

    Article  Google Scholar 

  12. Cheng J.T. and Giordano N. (2002). Fluid flow through nanometer-scale channels. Phys. Rev. E 65(3): 031206

    Article  CAS  Google Scholar 

  13. Cottin-Bizonne C., Barentin C., Charlaix E., Bocquet L. and Barrat J.L. (2004). Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E 15(4): 427–438

    Article  CAS  Google Scholar 

  14. Cottin-Bizonne C., Barrat J.L., Bocquet L. and Charlaix E. (2003). Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2(4): 237–240

    Article  CAS  Google Scholar 

  15. Cottin-Bizonne C., Jurine S., Baudry J., Crassous J., Restagno F. and Charlaix E. (2002). Nanorheology: an investigation of the boundary condition at hydrophobic and hydrophilic interfaces. Eur. Phys. J. E 9(1): 47–53

    CAS  Google Scholar 

  16. de Gennes P.G. (2002). On fluid/wall slippage. Langmuir 18(9): 3413–3414

    Article  CAS  Google Scholar 

  17. Granick S., Zhu Y.X. and Lee H. (2003). Slippery questions about complex fluids flowing past solids. Nat. Mater. 2(4): 221–227

    Article  CAS  Google Scholar 

  18. Harting J., Kunert C. and Herrmann H.J. (2006). Lattice boltzmann simulations of apparent slip in hydrophobic microchannels. Europhys. Lett. 75(2): 328–334

    Article  CAS  Google Scholar 

  19. Karlin I.V., Ferrante A. and Ottinger H.C. (1999). Perfect entropy functions of the lattice boltzmann method. Europhys. Lett. 47(2): 182–188

    Article  CAS  Google Scholar 

  20. Lauga E. and Brenner M.P. (2004). Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys. Rev. E 70(2): 026311

    Article  CAS  Google Scholar 

  21. Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: the no-slip boundary condition. Handbook of Experimental Fluid Dynamics, pp 1240. Springer (2007)

  22. Li B.M. and Kwok D.Y. (2003). Discrete boltzmann equation for microfluidics. Phys. Rev. Lett. 90(12): 124502

    Article  CAS  Google Scholar 

  23. Neto C., Evans D.R., Bonaccurso E., Butt H.J. and Craig V.S.J. (2005). Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12): 2859–2897

    Article  CAS  Google Scholar 

  24. Ou J. and Rothstein J.P. (2005). Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17(10): 103606

    Article  CAS  Google Scholar 

  25. Priezjev N.V., Darhuber A.A. and Troian S.M. (2005). Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71(4): 041608

    Article  CAS  Google Scholar 

  26. Shan X.W. and Chen H.D. (1993). Lattice boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3): 1815–1819

    Article  Google Scholar 

  27. Shan X.W. and Chen H.D. (1994). Simulation of nonideal gases and liquid-gas phase-transitions by the lattice boltzmann-equation. Phys. Rev. E 49(4): 2941–2948

    Article  CAS  Google Scholar 

  28. Succi, S.: The Lattice Boltzmann Equation. Oxford Science (2001)

  29. Swift M.R., Osborn W.R. and Yeomans J.M. (1995). Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75(5): 830–833

    Article  CAS  Google Scholar 

  30. Thompson P.A. and Troian S.M. (1997). A general boundary condition for liquid flow at solid surfaces. Nature 389(6649): 360–362

    Article  CAS  Google Scholar 

  31. Tretheway D.C. and Meinhart C.D. (2002). Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14(3): L9–L12

    Article  CAS  Google Scholar 

  32. Tyrrell J.W.G. and Attard P. (2001). Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 8717(17): 176104

    Article  CAS  Google Scholar 

  33. Watanabe K., Udagawa Y. and Udagawa H. (1999). Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381: 225–238

    Article  CAS  Google Scholar 

  34. Zhu, Y.X., Granick, S.: Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 8709(9), art. no.–096105 (2001)

    Google Scholar 

  35. Zhu Y.X. and Granick S. (2002). Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88(10): 106102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Biferale.

Additional information

This article is to be regarded part of the first Synergy Between Experiment and Computation in Nanoscale Science (NNIN/C) conference held in Cambridge, Massachusetts, U.S.A., 31 May–3 June 2006 proceedings published in the Journal of Computer-Aided Materials Design, Volume 14, No. 1, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biferale, L., Benzi, R., Sbragaglia, M. et al. Wetting/dewetting transition of two-phase flows in nano-corrugated channels. J Computer-Aided Mater Des 14, 447–456 (2007). https://doi.org/10.1007/s10820-007-9061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-007-9061-1

Keywords

Navigation