Skip to main content
Log in

Obstetrical and neonatal outcomes after vitrified-warmed blastocyst transfer in day 1 rescue intracytoplasmic sperm injection cycles: a retrospective cohort study

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Fertilization failure often occurs in conventional IVF cycles, and day 1 rescue ICSI is frequently recommended. In this study, the effect of rescue ICSI on obstetrical and neonatal outcomes after a single blastocyst transfer in vitrified-warmed cycles is evaluated.

Methods

This cohort study was a retrospective analysis of 703 vitrified-warmed single blastocyst transfers and 219 singletons in the r-ICSI group compared with 11,611 vitrified-warmed single blastocyst transfers in the IVF/ICSI and 4472 singletons in the IVF/ICSI group, respectively, and patients just undergoing their first IVF treatments were included in this study. Pregnancy rate (PR), live birth rate (LBR), and singleton birthweight were the primary outcome measures. Multiple linear regression analysis and logistic regression analysis were performed to evaluate the possible relationship between obstetrical and neonatal outcomes and fertilization method (including IVF, ICSI, and r-ICSI) after adjusting for other potential confounding factors.

Results

PR and the LBR were lower in the r-ICSI group compared with the IVF/ ICSI group. Singletons from the r-ICSI group had a higher Z-score and the proportion of large for gestational age (LGA) newborns was greater compared with singletons from the IVF/ICSI group.

Conclusion

The results of the study indicated that a 31% LBR after r-ICSI is acceptable for vitrified-warmed blastocyst transfer, but the safety of transfer is a concern because of the lower PR and LBR compared with IVF/ICSI. The safety of r-ICSI newborns is also a concern because of the significantly higher birthweight and the proportion of LGA in r-ICSI group newborns compared with the IVF/ICSI group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data generated or analyzed are included in this article. Further inquiries can be directed to the corresponding author.

References

  1. Kuczyński W, Dhont M, Grygoruk C, et al. Rescue ICSI of unfertilized oocytes after IVF. Hum Reprod. 2002;17(9):2423–7. https://doi.org/10.1093/humrep/17.9.2423.

    Article  PubMed  Google Scholar 

  2. Lombardi E, Tiveron M, Inza R, et al. Live birth and normal 1-year follow-up of a baby born after transfer of cryopreserved embryos from rescue intracytoplasmic sperm injection of 1-day-old oocytes. Fertil Steril. 2003;80(3):646–8. https://doi.org/10.1016/s0015-0282(03)00996-8.

    Article  PubMed  Google Scholar 

  3. Yuzpe AA, Liu Z, Fluker MR. Rescue intracytoplasmic sperm injection (ICSI)-salvaging in vitro fertilization (IVF) cycles after total or near-total fertilization failure. Fertil Steril. 2000;73(6):1115–9. https://doi.org/10.1016/s0015-0282(00)00522-7.

    Article  CAS  PubMed  Google Scholar 

  4. DeUgarte CM, Li M, Jordan B, et al. Rescue intracytoplasmic sperm injection and preimplantation genetic diagnosis in combination can result in pregnancy. Fertil Steril. 2006;86(1):200–2. https://doi.org/10.1016/j.fertnstert.2006.03.021.

    Article  PubMed  Google Scholar 

  5. Ming L, P Liu, J Qiao, et al. Synchronization between embryo development and endometrium is a contributing factor for rescue ICSI outcome. Reprod Biomed Online. 2012; 24(5): 527–31. https://doi.org/10.1016/j.rbmo.2012.02.001.

  6. Sermondade N, Hugues JN, Cedrin-Durnerin I, et al. Should all embryos from day 1 rescue intracytoplasmic sperm injection be transferred during frozen-thawed cycles? Fertil Steril. 2010;94(3):1157–8. https://doi.org/10.1016/j.fertnstert.2009.12.001.

    Article  PubMed  Google Scholar 

  7. Li M, Li Q, Wang Y, et al. Blastocyst cryopreservation and cryopreservation-warming transfer is an effective embryo transfer strategy for day 1 rescue intracytoplasmic sperm injection cycles. Sci Rep. 2021;11(1):8260. https://doi.org/10.1038/s41598-021-87693-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Land JA. How should we report on perinatal outcome? Hum Reprod. 2006;21(10):2638–9. https://doi.org/10.1093/humrep/del246.

    Article  PubMed  Google Scholar 

  9. Liu N, Ma Y, Li R, et al. Comparison of follicular fluid amphiregulin and EGF concentrations in patients undergoing IVF with different stimulation protocols. Endocrine. 2012;42(3):708–16. https://doi.org/10.1007/s12020-012-9706-z.

    Article  CAS  PubMed  Google Scholar 

  10. Palermo G, Joris H, Devroey P, et al. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng X, Chen Y, Yan J, et al. Effect of repeated cryopreservation on human embryo developmental potential. Reprod Biomed Online. 2017;35(6):627–32. https://doi.org/10.1016/j.rbmo.2017.08.016.

    Article  PubMed  Google Scholar 

  12. Chen Y, Zheng X, Yan J, et al. Neonatal outcomes after the transfer of vitrified blastocysts: closed versus open vitrification system. Reprod Biol Endocrinol. 2013;11:107. https://doi.org/10.1186/1477-7827-11-107.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roelens C, Santos-Ribeiro S, Becu L, et al. Frozen-warmed blastocyst transfer after 6 or 7 days of progesterone administration: impact on live birth rate in hormone replacement therapy cycles. Fertil Steril. 2020;114(1):125–32. https://doi.org/10.1016/j.fertnstert.2020.03.017.

    Article  CAS  PubMed  Google Scholar 

  14. Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–68. https://doi.org/10.1016/S0140-6736(14)60932-6.

    Article  PubMed  Google Scholar 

  15. Miao YL, Kikuchi K, Sun QY, et al. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update. 2009;15(5):573–85. https://doi.org/10.1093/humupd/dmp014.

    Article  PubMed  Google Scholar 

  16. Pehlivan T, Rubio C, Ruiz A, et al. Embryonic chromosomal abnormalities obtained after rescue intracytoplasmic sperm injection of 1-day-old unfertilized oocytes. J Assist Reprod Genet. 2004;21(2):55–7. https://doi.org/10.1023/b:jarg.0000025939.26834.93.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimoi G, Tomita M, Kataoka M, et al. Destabilization of spindle assembly checkpoint causes aneuploidy during meiosis II in murine post-ovulatory aged oocytes. J Reprod Dev. 2019;65(1):57–66. https://doi.org/10.1262/jrd.2018-056.

    Article  CAS  PubMed  Google Scholar 

  18. Shimoi G, Wakabayashi R, Ishikawa R, et al. Effects of post-ovulatory aging on centromeric cohesin protection in murine MII oocytes. Reprod Med Biol. 2022; 21(1). https://doi.org/10.1002/rmb2.12433.

  19. Feitosa WB, Morris PL. Post-ovulatory aging is associated with altered patterns for small ubiquitin-like modifier (SUMO) proteins and SUMO-specific proteases. FASEB J. 2023;37(3):e22816. https://doi.org/10.1096/fj.202200622R.

    Article  CAS  PubMed  Google Scholar 

  20. Martin JH, Nixon B, Cafe SL, et al. Oxidative stress and reproductive function: oxidative stress and in vitro ageing of the post-ovulatory oocyte: an update on recent advances in the field. Reproduction. 2022;164(6):F109-f124. https://doi.org/10.1530/rep-22-0206.

    Article  CAS  PubMed  Google Scholar 

  21. Schon EA, Kim SH, Ferreira JC, et al. Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection? Hum Reprod. 2000;15(Suppl 2):160–72. https://doi.org/10.1093/humrep/15.suppl_2.160.

    Article  PubMed  Google Scholar 

  22. Zhang X, Wu XQ, Lu S, et al. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res. 2006;16(10):841–50. https://doi.org/10.1038/sj.cr.7310095.

    Article  CAS  PubMed  Google Scholar 

  23. Lee AR, Thanh Ha L, Kishigami S, et al. Abnormal lysine acetylation with postovulatory oocyte aging. Reprod Med Biol. 2014;13(2):81–6. https://doi.org/10.1007/s12522-013-0172-y.

    Article  PubMed  Google Scholar 

  24. Liang X, Ma J, Schatten H, et al. Epigenetic changes associated with oocyte aging. Sci China Life Sci. 2012;55(8):670–6. https://doi.org/10.1007/s11427-012-4354-3.

    Article  CAS  PubMed  Google Scholar 

  25. Liang XW, Ge ZJ, Wei L, et al. The effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at mid-term gestation. Mol Hum Reprod. 2011;17(9):562–7. https://doi.org/10.1093/molehr/gar018.

    Article  CAS  PubMed  Google Scholar 

  26. Petri T, Dankert D, Demond H, et al. In vitro postovulatory oocyte aging affects H3K9 trimethylation in two-cell embryos after IVF. Ann Anat. 2020;227:151424. https://doi.org/10.1016/j.aanat.2019.151424.

    Article  PubMed  Google Scholar 

  27. Gao Y, Yi L, Zhan J, et al. A clinical study of preimplantation DNA methylation screening in assisted reproductive technology. Cell Res. 2023;33(6):483–5. https://doi.org/10.1038/s41422-023-00809-z.

    Article  CAS  PubMed  Google Scholar 

  28. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20. https://doi.org/10.1038/nrg3354.

    Article  CAS  PubMed  Google Scholar 

  29. Whitelaw N, Bhattacharya S, Hoad G, et al. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod. 2014;29(7):1452–8. https://doi.org/10.1093/humrep/deu094.

    Article  CAS  PubMed  Google Scholar 

  30. Banik A, Kandilya D, Ramya S, et al. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring. Genes (Basel). 2017; 8(6). https://doi.org/10.3390/genes8060150.

  31. Engel SM, Joubert BR, Wu MC, et al. Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort. Am J Epidemiol. 2014;179(7):834–42. https://doi.org/10.1093/aje/kwt433.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Agha G, Hajj H, Rifas-Shiman SL, et al. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin Epigenetics. 2016;8:118. https://doi.org/10.1186/s13148-016-0285-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. St-Pierre J, Hivert MF, Perron P, et al. IGF2 DNA methylation is a modulator of newborn’s fetal growth and development. Epigenetics. 2012;7(10):1125–32. https://doi.org/10.4161/epi.21855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carlsen EO, Lee Y, Magnus P, et al. An examination of mediation by DNA methylation on birthweight differences induced by assisted reproductive technologies. Clin Epigenetics. 2022;14(1):151. https://doi.org/10.1186/s13148-022-01381-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kupers LK, Monnereau C, Sharp GC, et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun. 2019;10(1):1893. https://doi.org/10.1038/s41467-019-09671-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haworth KE, Farrell WE, Emes RD, et al. Methylation of the FGFR2 gene is associated with high birth weight centile in humans. Epigenomics. 2014;6(5):477–91. https://doi.org/10.2217/epi.14.40.

    Article  CAS  PubMed  Google Scholar 

  37. Pelletier A, Carrier A, Zhao Y, et al. Epigenetic and transcriptomic programming of HSC quiescence signaling in large for gestational age neonates. Int J Mol Sci. 2022; 23(13). https://doi.org/10.3390/ijms23137323.

  38. Shen Z, Tang Y, Song Y, et al. Differences of DNA methylation patterns in the placenta of large for gestational age infant. Medicine (Baltimore). 2020;99(39):e22389. https://doi.org/10.1097/MD.0000000000022389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tarin JJ, Perez-Albala S, Aguilar A, et al. Long-term effects of postovulatory aging of mouse oocytes on offspring: a two-generational study. Biol Reprod. 1999;61(5):1347–55. https://doi.org/10.1095/biolreprod61.5.1347.

    Article  CAS  PubMed  Google Scholar 

  40. Tarín JJ, Pérez-Albalá S, Pérez-Hoyos S, et al. Postovulatory aging of oocytes decreases reproductive fitness and longevity of offspring. Biol Reprod. 2002;66(2):495–9. https://doi.org/10.1095/biolreprod66.2.495.

    Article  PubMed  Google Scholar 

  41. Maheshwari A, Pandey S, Amalraj Raja E, et al. Is frozen embryo transfer better for mothers and babies? Can cumulative meta- analysis provide a definitive answer? Hum Reprod Update. 2018;24:35–58.

    Article  PubMed  Google Scholar 

  42. Cnattingius S, Villamor E, Lagerros YT, et al. High birth weight and obesity–a vicious circle across generations. Int J Obes (Lond). 2012;36(10):1320–4. https://doi.org/10.1038/ijo.2011.248.

    Article  CAS  PubMed  Google Scholar 

  43. Moore GS, Kneitel AW, Walker CK, et al. Autism risk in small-and large-for-gestational-age infants. Am J Obstet Gynecol. 2012;206(4):314 e1-9. https://doi.org/10.1016/j.ajog.2012.01.044.

    Article  PubMed  Google Scholar 

  44. Mu M, Wang SF, Sheng J, et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis. 2012;105(2):99–113. https://doi.org/10.1016/j.acvd.2011.10.006.

    Article  PubMed  Google Scholar 

  45. Pereira N, Elias RT, Christos PJ, et al. Supraphysiologic estradiol is an independent predictor of low birth weight in full-term singletons born after fresh embryo transfer. Hum Reprod. 2017;32(7):1410–7. https://doi.org/10.1093/humrep/dex095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Järvelä IY, Pelkonen S, Uimari O, et al. Controlled ovarian hyperstimulation leads to high progesterone and estradiol levels during early pregnancy. Hum Reprod. 2014;29(11):2393–401. https://doi.org/10.1093/humrep/deu223.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (no. 2023YFC2705604) and the National Science Foundation of China (82071721, 82371706 and 82288102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Ping Liu.

Ethics declarations

Ethical approval and consent to participate

The study was approved by the Ethics Committee of Beijing University Third Hospital (reference no: 2022SZ-070), and all patients signed written informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, N., Huang, J. et al. Obstetrical and neonatal outcomes after vitrified-warmed blastocyst transfer in day 1 rescue intracytoplasmic sperm injection cycles: a retrospective cohort study. J Assist Reprod Genet (2024). https://doi.org/10.1007/s10815-024-03126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10815-024-03126-5

Keywords

Navigation