Skip to main content
Log in

Failure of complete hatching of ICSI-derived human blastocyst by cell herniation via small slit and insufficient expansion despite ongoing cell proliferation

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess the effect of intracytoplasmic sperm injection (ICSI) on embryo hatching and visualise the effects of zona thinning (ZT) on the embryo using time-lapse monitoring.

Methods

In vitro fertilisation (IVF) (n = 178) and ICSI (n = 110)-derived cryopreserved blastocysts were donated by patients who previously had a baby. This study investigated the impacts of IVF, ICSI, laser-assisted hatching by ZT and formation of ICSI penetration trace on zona pellucida of IVF-derived blastocyst on blastcyst diameter, the estimated number of trophectoderm (TE) cells and completed hatching rate.

Results

The completed hatching rate and diameters of the completely hatched blastocysts at hatching commencement and at the maximum expansion were significantly greater in the IVF than in ICSI groups. The completed hatching rate significantly increased with ZT in both groups. The maximum diameters of the completely hatched blastocysts were significantly smaller in the ZT than in non-ZT groups. The estimated TE cell numbers increased from hatching commencement to their maximum expansion points. The incompletely hatched ICSI-derived blastocysts intermittently herniated cells via small slits until degeneration. The completed hatching rate significantly decreased by the formation of ICSI penetration trace on zona pellucida of IVF-derived blastocyst.

Conclusion

ICSI-derived blastocysts intermittently release proliferating cells and extracted TE cells and/or inner cell masses via a small slit; thus, blastocyst expansion is not sufficiently increased, leading to a reduced complete hatching rate. Therefore, the ICSI penetration trace potentially has negative effects on blastocyst expansion process in vitro and is a risk factor for the failure of completed hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sathananthan H, Menezes J, Gunasheela S. Mechanics of human blastocyst hatching in vitro. Reprod BioMed Online. 2003;7:228–34.

    Article  PubMed  Google Scholar 

  2. al-Nuaim LA, Jenkins JM. Assisted hatching in assisted reproduction. BJOG. 2002;109:856–62.

    Article  PubMed  Google Scholar 

  3. Seshagiri PB, Vani V, Madhulika P. Cytokines and blastocyst hatching. Am J Reprod Immunol. 2016;75:208–17.

    Article  CAS  PubMed  Google Scholar 

  4. Niimura S, Ogata T, Okimura A, Sato T, Uchiyama Y, Seta T, et al. Time-lapse videomicrographic observations of blastocyst hatching in cattle. J Reprod Dev. 2010;56:649–54.

    Article  PubMed  Google Scholar 

  5. Onodera Y, Takahashi K, Goto M, Anzai M, Ono N, Shirasawa H, et al. The location of “8”-shaped hatching influences inner cell mass formation in mouse blastocysts. PLoS One. 2017;12:e0175150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Hatching of in vitro fertilized human embryos is influenced by fertilization method. Fertil Steril. 2013;100:1277–82.

    Article  PubMed  Google Scholar 

  7. Familiari G, Heyn R, Relucenti M, Nottola SA, Sathananthan AH. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development. Int Rev Cytol. 2006;249:53–141.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta SK, Bhandari B. Acrosome reaction: relevance of zona pellucida glycoproteins. Asian J Androl. 2011;13:97–105.

    Article  CAS  PubMed  Google Scholar 

  9. Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, et al. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012;349:665–78.

    Article  CAS  PubMed  Google Scholar 

  10. Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev. 2012;79:742–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nottola SA, Makabe S, Stallone T, Familiari G, Correr S, Macchiarelli G. Surface morphology of the zona pellucida surrounding human blastocysts obtained after in vitro fertilization. Arch Histol Cytol. 2005;68:133–41.

    Article  PubMed  Google Scholar 

  12. Griffiths TA, Murdoch AP, Herbert M. Embryonic development in vitro is compromised by the ICSI procedure. Hum Reprod. 2000;15:1592–6.

    Article  CAS  PubMed  Google Scholar 

  13. Alteri A, Viganò P, Maizar AA, Jovine L, Giacomini E, Rubino P. Revisiting embryo assisted hatching approaches: a systematic review of the current protocols. J Assist Reprod Genet. 2018;35:367–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hiraoka K, Hiraoka K, Horiuchi T, Kusuda T, Okano S, Kinutani M, et al. Impact of the size of zona pellucida thinning area on vitrified-warmed cleavage-stage embryo transfers: a prospective, randomized study. J Assist Reprod Genet. 2009;26:515–21.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Debrock S, Peeraer K, Spiessens C, Willemen D, De Loecker P, D'Hooghe TM. The effect of modified quarter laser-assisted zona thinning on the implantation rate per embryo in frozen/vitrified-thawed/warmed embryo transfer cycles: a prospective randomized controlled trial. Hum Reprod. 2011;26:1997–2007.

    Article  CAS  PubMed  Google Scholar 

  16. Wang EH, Wang AC, Wang BS, Li B. Outcomes of vitrified-warmed cleavage-stage embryo hatching after in vitro laser-assisted zona pellucida thinning in patients. Biomed Rep. 2016;5:376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moser M, Ebner T, Sommergruber M, Gaisswinkler U, Jesacher K, Puchner M, et al. Laser-assisted zona pellucida thinning prior to routine ICSI. Hum Reprod. 2004;19:573–8.

    Article  CAS  PubMed  Google Scholar 

  18. Balaban B, Urman B, Yakin K, Isiklar A. Laser-assisted hatching increases pregnancy and implantation rates in cryopreserved embryos that were allowed to cleave in vitro after thawing: a prospective randomized study. Hum Reprod. 2006;21:2136–40.

    Article  PubMed  Google Scholar 

  19. Kutlu P, Atvar O, Vanlioglu OF. Laser assisted zona thinning technique has no beneficial effect on the ART outcomes of two different maternal age groups. J Assist Reprod Genet. 2010;27:457–61.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escribá MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98:1458–63.

    Article  PubMed  Google Scholar 

  21. Otsuki J, Iwasaki T, Katada Y, Tsutsumi Y, Tsuji Y, Furuhashi K, et al. A higher incidence of cleavage failure in oocytes containing smooth endoplasmic reticulum clusters. J Assist Reprod Genet. 2018;35:899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marcos J, Pérez-Albalá S, Mifsud A, Molla M, Landeras J, Meseguer M. Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study. Hum Reprod. 2015;30:2501–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20:617–31.

    Article  PubMed  Google Scholar 

  24. Kovačič B, Taborin M, Vlaisavljević V. Artificial blastocoel collapse of human blastocysts before vitrification and its effect on re-expansion after warming - a prospective observational study using time-lapse microscopy. Reprod BioMed Online. 2018;36:121–9.

    Article  PubMed  Google Scholar 

  25. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.

    Article  CAS  PubMed  Google Scholar 

  26. Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond. Carnforth: Parthenon Press; 1999. p. 377–88.

    Google Scholar 

  27. Lagalla C, Barberi M, Orlando G, Sciajno R, Bonu MA, Borini A. A quantitative approach to blastocyst quality evaluation: morphometric analysis and related IVF outcomes. J Assist Reprod Genet. 2015;32:705–12.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang TT, Chinn K, Kosasa T, Ahn HJ, Kessel B. Morphokinetics of human blastocyst expansion in vitro. Reprod BioMed Online. 2016;33:659–67.

    Article  CAS  PubMed  Google Scholar 

  29. Moreira da Silva F, Metelo R. Relation between physical properties of the zona pellucida and viability of bovine embryos after slow-freezing and vitrification. Reprod Domest Anim. 2005;40:205–9.

    Article  CAS  PubMed  Google Scholar 

  30. Shimoda Y, Kumagai J, Anzai M, Kabashima K, Togashi K, Miura Y, et al. Time-lapse monitoring reveals that vitrification increases the frequency of contraction during the pre-hatching stage in mouse embryos. J Reprod Dev. 2016;62:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghetler Y, Raz T, Ben Nun I, Shalgi R. Cortical granules reaction after intracytoplasmic sperm injection. Mol Hum Reprod. 1998;4:289–94.

    Article  CAS  PubMed  Google Scholar 

  32. Ludwig M, Schröder AK, Diedrich K. Impact of intracytoplasmic sperm injection on the activation and fertilization process of oocytes. Reprod BioMed Online. 2001;3:230–40.

    Article  PubMed  Google Scholar 

  33. Saldívar-Hernández A, González-González ME, Sánchez-Tusié A, Maldonado-Rosas I, López P, Treviño CL, et al. Human sperm degradation of zona pellucida proteins contributes to fertilization. Reprod Biol Endocrinol. 2015;13:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwayama H, Hochi S, Yamashita M. Birefringence parameter available for quantitative analysis of human zona hardness. Zygote. 2011;19:323–9.

    Article  PubMed  Google Scholar 

  35. Schwartz P, Magerkurth C, Michelmann HW. Scanning electron microscopy of the zona pellucida of human oocytes during intracytoplasmic sperm injection (ICSI). Hum Reprod. 1996;11:2693–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ou YC, Lan KC, Huang FJ, Kung FT, Lan TH, Chang SY. Comparison of in vitro fertilization versus intracytoplasmic sperm injection in extremely low oocyte retrieval cycles. Fertil Steril. 2010;93:96–100.

    Article  PubMed  Google Scholar 

  37. Shveiky D, Simon A, Gino H, Safran A, Lewin A, Reubinoff B, et al. Sibling oocyte submission to IVF and ICSI in unexplained infertility patients: a potential assay for gamete quality. Reprod BioMed Online. 2006;12:371–4.

    Article  PubMed  Google Scholar 

  38. van Rumste MM, Evers JL, Farquhar CM. Intra-cytoplasmic sperm injection versus conventional techniques for oocyte insemination during in vitro fertilisation in patients with non-male subfertility. Cochrane Database Syst Rev. 2003;(2):CD001301.

  39. Schimmel T, Cohen J, Saunders H, Alikani M. Laser-assisted zona pellucida thinning does not facilitate hatching and may disrupt the in vitro hatching process: a morphokinetic study in the mouse. Hum Reprod. 2014;29:2670–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blake DA, Forsberg AS, Johansson BR, Wikland M. Laser zona pellucida thinning-an alternative approach to assisted hatching. Hum Reprod. 2001;16:1959–64.

    Article  CAS  PubMed  Google Scholar 

  41. Vajta G, Rienzi L, Bavister BD. Zona-free embryo culture: is it a viable option to improve pregnancy rates? Reprod BioMed Online. 2010;21:17–25.

    Article  PubMed  Google Scholar 

  42. Palermo GD, O'Neill CL, Chow S, Cheung S, Parrella A, Pereira N, et al. Intracytoplasmic sperm injection: state of the art in humans. Reproduction. 2017;154:F93–F110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sayumi Taguchi M.S., Kayoko Hirao and Yoshiko Tsujimoto M.S. for triple checking the cryopreserved blastocysts that the patients approved and agreed to donate because they already had a child. We thank Sayumi Taguchi M.S. for maintaining the Geri+ incubator.

Author information

Authors and Affiliations

Authors

Contributions

T. I. designed this study, collected and analysed data and drafted the manuscript. M. U contributed to the data analysis and critically reviewed the manuscript. K. M and Y. Y revised the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Taketo Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Umeda Fertility Clinic Institutional Review Board (171114) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, T., Uemura, M., Miyazaki, K. et al. Failure of complete hatching of ICSI-derived human blastocyst by cell herniation via small slit and insufficient expansion despite ongoing cell proliferation. J Assist Reprod Genet 36, 1579–1589 (2019). https://doi.org/10.1007/s10815-019-01521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01521-x

Keywords

Navigation