Skip to main content
Log in

Alterations in the proliferative/apoptotic equilibrium in semen of adolescents with varicocele

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To verify if the presence of varicocele (grades II and III) with and without seminal alterations, using the 5th centile cutoff values in table A1.1 of the World Health Organization (WHO, 2010) manual, alters the seminal plasma levels of proteins DNASE1 (deoxyribonuclease-1) and IGFBP7 (Insulin-like growth factor-binding protein 7), which are related to apoptosis regulation and cell proliferation, respectively, demonstrating that these proteins are important for correct spermatogenesis.

Methods

This cross sectional study was performed at the Sao Paulo Federal University Paulo between May 2014 and April 2016. A total of 61 male adolescents were included in this study, of which 20 controls without varicocele (C), 22 with varicocele and normal semen analysis (VNS) and 19 with varicocele and altered semen analysis (VAS). Seminal plasma from each patient was used for Western blotting analysis of individual protein levels. Values of each protein were normalized to a testicular housekeeping protein (PARK7—protein deglycase DJ-1).

Results

Levels of IGFBP7 protein are increased in varicocele. Levels of DNASE1 are progressively decreased in varicocele (lower in varicocele and normal semen analysis, lowest in varicocele and altered semen analysis) when compared to adolescents without varicocele. DNASE1 levels are positively correlated with sperm concentration and morphology (correlation values of 0.400 and 0.404, respectively; p values of 0.001 and 0.001, respectively).

Conclusion

In conclusion, in adolescents, seminal plasma levels of IGFBP7, responsible for proliferative activity, are increased in varicocele grades II and III, and DNASE1, responsible for apoptosis regulation, are lower in varicocele, lowest in varicocele and low semen quality. These proteins demonstrate molecular alterations brought upon by varicocele. Moreover, DNASE1 is capable of discriminating a varicocele that causes alterations to semen quality from one that does not. We propose that the initial response of varicocele is to increase proliferative activity which, if followed by regulation of apoptosis, may lead to the ejaculation of a population of sperm that are in accordance with WHO cutoff values but, in the presence of dysregulated apoptosis, leads to lower sperm concentration and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gat Y, Bachar GN, Zukerman Z, Belenky A, Gornish M. Varicocele: a bilateral disease. Fertil Steril. 2004;81:424–9.

    Article  PubMed  Google Scholar 

  2. Benoff S, Gilbert BR. Varicocele and male infertility: part I. Preface Hum Reprod Update. 2001;7:47–54.

    Article  CAS  PubMed  Google Scholar 

  3. Hauser R, Paz G, Botchan A, Yogev L, Yavetz H. Varicocele: effect on sperm functions. Hum Reprod Update. 2001;7:482–5.

    Article  CAS  PubMed  Google Scholar 

  4. Smith R, Kaune H, Parodi D, Madariaga M, Rios R, Morales I, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod Oxf Engl. 2006;21:986–93.

    Article  CAS  Google Scholar 

  5. Witt MA, Lipshultz LI. Varicocele: a progressive or static lesion? Urology. 1993;42:541–3.

    Article  CAS  PubMed  Google Scholar 

  6. Gorelick JI, Goldstein M. Loss of fertility in men with varicocele. Fertil Steril. 1993;59:613–6.

    Article  CAS  PubMed  Google Scholar 

  7. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  8. Zini A, Blumenfeld A, Libman J, Willis J. Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod Oxf Engl. 2005;20:1018–21.

    Article  CAS  Google Scholar 

  9. Cozzolino DJ, Lipshultz LI. Varicocele as a progressive lesion: positive effect of varicocele repair. Hum Reprod Update. 2001;7:55–8.

    Article  CAS  PubMed  Google Scholar 

  10. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil Steril 1992;57:1289–93.

  11. Diamond D. Adolescent versus adult varicoceles—how do evaluation and management differ? J Urol. 2009;181:2418–9.

    Article  PubMed  Google Scholar 

  12. Practice Committee of the American Society for Reproductive Medicine, Society for Male Reproduction and Urology. Report on varicocele and infertility: a committee opinion. Fertil Steril 2014;102:1556–60.

  13. Bertolla RP, Cedenho AP, Hassun Filho PA, Lima SB, Ortiz V, Srougi M. Sperm nuclear DNA fragmentation in adolescents with varicocele. Fertil Steril. 2006;85:625–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lacerda JI, Del Giudice PT, da Silva BF, Nichi M, Fariello RM, Fraietta R, et al. Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril. 2011;95:994–9.

    Article  PubMed  Google Scholar 

  15. Agarwal A, Deepinder F, Cocuzza M, Agarwal R, Short RA, Sabanegh E, et al. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology. 2007;70:532–8.

    Article  PubMed  Google Scholar 

  16. Gentile DP, Cockett AT. The effect of varicocelectomy on testicular volume in 89 infertile adult males with varicoceles. Fertil Steril. 1992;58:209–11.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto M, Hibi H, Katsuno S, Miyake K. Effects of varicocelectomy on testis volume and semen parameters in adolescents: a randomized prospective study. Nagoya J Med Sci. 1995;58:127–32.

    CAS  PubMed  Google Scholar 

  18. Cocuzza M, Cocuzza MA, Bragais FMP, Agarwal A. The role of varicocele repair in the new era of assisted reproductive technology. Clin São Paulo Braz. 2008;63:395–404.

    Article  Google Scholar 

  19. Del Giudice PT, da Silva BF, Lo Turco EG, Fraietta R, Spaine DM, Santos LFA, et al. Changes in the seminal plasma proteome of adolescents before and after varicocelectomy. Fertil Steril. 2013;100:667–72.

    Article  PubMed  Google Scholar 

  20. Zylbersztejn DS, Andreoni C, Del Giudice PT, Spaine DM, Borsari L, Souza GHMF, et al. Proteomic analysis of seminal plasma in adolescents with and without varicocele. Fertil Steril. 2013;99:92–8.

    Article  CAS  PubMed  Google Scholar 

  21. Del Giudice PT, Belardin LB, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KHM, et al. Determination of testicular function in adolescents with varicocoele—a proteomics approach. Andrology. 2016;4:447–55.

    Article  PubMed  Google Scholar 

  22. Samejima K, Earnshaw WC. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol. 2005;6:677–88.

    Article  CAS  PubMed  Google Scholar 

  23. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–28.

    Article  CAS  PubMed  Google Scholar 

  24. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dubin L, Amelar RD. Varicocele size and results of varicocelectomy in selected subfertile men with varicocele. Fertil Steril. 1970;21:606–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mori MM, Bertolla RP, Fraietta R, Ortiz V, Cedenho AP. Does varicocele grade determine extent of alteration to spermatogenesis in adolescents? Fertil Steril. 2008;90:1769–73.

    Article  PubMed  Google Scholar 

  27. World Health Organization. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambrige University Press; 2010.

  28. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    Article  CAS  PubMed  Google Scholar 

  29. Mori MM, Cedenho AP, Koifman S, Srougi M. Sperm characteristics in a sample of healthy adolescents in São Paulo. Brazil Cad Saúde Pública. 2002;18:525–30.

    Article  PubMed  Google Scholar 

  30. Milardi D, Grande G, Sacchini D, Astorri AL, Pompa G, Giampietro A, et al. Male fertility and reduction in semen parameters: a single tertiary-care center experience. Int J Endocrinol. 2012;2012:649149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl. 2016;18:194–201.

    Article  PubMed  Google Scholar 

  32. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. 2010.

  33. Gerena RL, Irikura D, Urade Y, Eguchi N, Chapman DA, Killian GJ. Identification of a fertility-associated protein in bull seminal plasma as lipocalin-type prostaglandin D synthase. Biol Reprod. 1998;58:826–33.

    Article  CAS  PubMed  Google Scholar 

  34. D’Amours O, Frenette G, Bordeleau L-J, Allard N, Leclerc P, Blondin P, et al. Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine. Biol Reprod. 2012;87:94.

    Article  PubMed  Google Scholar 

  35. Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, et al. Proteomic analysis of human prostasomes. Prostate. 2003;56:150–61.

    Article  CAS  PubMed  Google Scholar 

  37. Akaogi K, Okabe Y, Funahashi K, Yoshitake Y, Nishikawa K, Yasumitsu H, et al. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun. 1994;198:1046–53.

    Article  CAS  PubMed  Google Scholar 

  38. Oh Y, Nagalla SR, Yamanaka Y, Kim HS, Wilson E, Rosenfeld RG. Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. J Biol Chem. 1996;271:30322–5.

    Article  CAS  PubMed  Google Scholar 

  39. Yamauchi T, Umeda F, Masakado M, Isaji M, Mizushima S, Nawata H. Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells. Biochem J. 1994;303:591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.

    Article  PubMed  Google Scholar 

  41. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10:26–37.

    Article  CAS  PubMed  Google Scholar 

  42. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    Article  CAS  PubMed  Google Scholar 

  43. Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg H-R, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83:635–42.

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol N Y N 1989. 2008;59:2–11.

    CAS  Google Scholar 

  45. Liu QY, Ribecco M, Pandey S, Walker PR, Sikorska M. Apoptosis-related functional features of the DNaseI-like family of nucleases. Ann N Y Acad Sci. 1999;887:60–76.

    Article  CAS  PubMed  Google Scholar 

  46. Oliveri M, Daga A, Cantoni C, Lunardi C, Millo R, Puccetti A. DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis. Eur J Immunol. 2001;31:743–51.

    Article  CAS  PubMed  Google Scholar 

  47. Alghamdi AS, Funnell BJ, Bird SL, Lamb GC, Rendahl AK, Taube PC, et al. Comparative studies on bull and stallion seminal DNase activity and interaction with semen extender and spermatozoa. Anim Reprod Sci. 2010;121:249–58.

    Article  CAS  PubMed  Google Scholar 

  48. Ding Z, Qu F, Guo W, Ying X, Wu M, Zhang Y. Identification of sperm forward motility-related proteins in human seminal plasma. Mol Reprod Dev. 2007;74:1124–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Pimenta Bertolla.

Ethics declarations

Conflicts of interest

None declared.

Authors’ roles

L.B.B. was responsible for conception and design of the study, acquisition of samples for analysis, acquisition of confirmatory proteomics data, interpretation of data, drafting of the article, revision of the article, and final approval for submission. P.T.D.G. participated in the acquisition of samples for analysis, interpretation of data, revision of the article, and final approval for submission. M.C. participated in the acquisition of samples for analysis, interpretation of data, revision of the article and final approval for submission. P.I. participated in the interpretation of data, revision of the article, and final approval for submission. M.P.A. participated in the interpretation of data, revision of the article, and final approval for submission. R.P.B. participated in conception and design of the study, analysis and interpretation of data, drafting of the article, and final approval for submission. A.P.C. participated in the conception and design of the study, clinical discussion of all the patients included in the study, discussion of results, drafting of the article, and final approval for submission.

Funding

L.B.B. was a recipient of a Masters scholarship from the Sao Paulo Research Foundation - FAPESP (process number 2014/11636-6). A.P.C. and R.P.B. are recipients of a Scientific Productivity scholarship from the Brazilian National Council for Scientific and Technological Development – CNPq (processes numbers 313077/2014-2 and 306616/2013-0, respectively). This work was supported by a Research Grant from the Sao Paulo Research Foundation – FAPESP (process number 2014/17185-6) and from the Brazilian National Council for Scientific and Technological Development (process number 454514/2014-0).

Ethical approval

Institutional Review Board approval was obtained from the Sao Paulo Federal University Research Ethics Committee (CAAE: 31701614.4.0000.5505).

Additional information

Capsule

In adolescents, seminal plasma levels of IGFBP7 are higher in varicocele, and of DNASE1 are lower in varicocele, lowest in varicocele in the presence of low semen quality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belardin, L.B., Del Giudice, P.T., Camargo, M. et al. Alterations in the proliferative/apoptotic equilibrium in semen of adolescents with varicocele. J Assist Reprod Genet 33, 1657–1664 (2016). https://doi.org/10.1007/s10815-016-0808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0808-z

Keywords

Navigation