Skip to main content
Log in

Direct and Sensitive Lead Analysis of Wheat Flour Using Laser-Induced Fluorescence Combined with Laser-Induced Breakdown Spectroscopy Under Low-Energy Ultraviolet Laser Ablation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Lead in any food is harmful even at low concentrations. In this study, a direct and highly sensitive lead analysis technique was developed for wheat flour using laser-induced fluorescence combined with laser-induced breakdown spectroscopy. Wheat flour was pressed into small pellets and ablated by a low-energy ultraviolet 266-nm laser. A tunable dye laser constructed in our laboratory was used to resonantly excite the lead. The optimized interpulse time delay was 400 ns. A calibration curve was constructed and the detection limit for lead was 73.8 ppb. This method could be used to directly and sensitively analyze wheat flour for trace concentrations of lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Johnson, Mutation Res., 410, 123–140 (1998).

    Article  ADS  Google Scholar 

  2. T. I. Lidsky and J. S. Schneider, Brain, 126, 5–19 (2003).

    Article  Google Scholar 

  3. J. E. Gall, R. S. Boyd, and N. Rajakaruna, Environ. Monit. Assess, 187, 201 (2015).

    Article  Google Scholar 

  4. P. K. Rai, S. S. Lee, M. Zhang, Y. F. Tsang, and K. H. Kim, Environ. Int., 125, 365–385 (2019).

    Article  Google Scholar 

  5. W. M. Yang, G. C. Xu, L. Y. Ji, and Y. E. Shang, J. Food Sci. Technol., 37, No. 1, 16–19 (2019).

    Article  Google Scholar 

  6. T. Borahana, T. Unutkanb, N. B. Turanc, F. Turaka, and S. Bakırdere, Food Chem., 299, Article ID 125065 (2019).

  7. B. T. Zaman, A. F. Erulaş, D. S. Chormey, and S. Bakirdere, Food Chem., 303, Article ID 125396 (202).

  8. S. M. Elgammal, M. A. Khorshed, and E. H. Ismail, J. Food Compos. Anal., 84, Article ID 103300 (2019).

  9. E. J. Sneddon, C. J. Hardaway, J. Sneddon, K. Boggavarapu, A. S. Tate, S. L. Tidwell, D. P. Gary, and C. Douvris, Microchem. J., 134, 9–12 (2017).

    Article  Google Scholar 

  10. U. S. Erdemir, Y. Sahan, and S. Gucer, Anal. Lett., 52, No. 17, 2840–2851 (2019).

    Article  Google Scholar 

  11. A. Londonio, E. Morzán, and P. Smichowski, Food Chem., 284, 149–154 (2019).

    Article  Google Scholar 

  12. E. P. Nardi, F. S. Evangelista, L. Tormen, T. D. Saint´Pierre, A. J. Curtius, S. S. de Souza, and F. Barbosa, Food Chem., 112, 727–732 (2009).

  13. B. Beldjilali, D. Borivent, L. Mercadier, E. Mothe, G. Clair, and J. Hermann, Spectrochim. Acta B, 65, 727–733 (2018).

    Article  ADS  Google Scholar 

  14. X. Chen, X. H. Li, S. B. Yang, A. X. Yu, and H. Liu, Opt. Express, 9, No. 3, 1057–1068 (2018).

    Article  Google Scholar 

  15. M. Galiova, J. Kaiser, K. Novotny, O. Samek, L. Reale, R. Malina, K. Palenikova, M. Liska, V. Cudek, V. Kanicky, V. Otruba, A. Poma, and A. Tucci, Spectrochim. Acta B, 62, 1597–1605 (2007).

    Article  ADS  Google Scholar 

  16. D. Santos, L. C. Nunes, G. G. A. de Carvalho, M. D. Gomes, P. F. de Souza, F. D. Leme, L. G. C. dos Santos, and F. G. Krug, Spectrochim. Acta B, 7172, 3–13 (2012).

    Article  ADS  Google Scholar 

  17. G. Kim, J. Kwak, J. Choi, and K. Park, J. Agric. Food. Chem., 60, 718–724 (2012).

    Article  Google Scholar 

  18. X. D. Zhao, C. J. Zhao, X. F. Du, and D. M. Dong, Sci. Rep., 9, 906 (2019).

    Article  ADS  Google Scholar 

  19. F. Liu, L. H. Ye, J. Y. Peng, K. L. Song, T. T. Shen, C. Zhang, and Y. He, Sensors, 18, 705 (2018).

    Article  ADS  Google Scholar 

  20. H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, Spectrosc. Spectr. Anal., 36, No. 4, 1180–1185 (2016).

    Google Scholar 

  21. T. J. Jiang, Z. Guo, M. J. Ma, L. Fang, M. Yang, S. S. Li, J. H. Liu, N. J. Zhao, X. J. Huang, and W. Q. Liu, Electrochim. Acta, 216, 188–195 (2016).

    Article  Google Scholar 

  22. P. Yang, R. Zhou, W. Zhang, R. X. Yi, S. S. Tang, L. B. Guo, Z. Q. Hao, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Food Chem., 272, 323–328 (2019).

    Article  Google Scholar 

  23. J. Y. Peng, Y. He, J. D. Jiang, Z. F. Zhao, F. Zhou, and F. Liu, Food Chem., 295, 327–333 (2019).

    Article  Google Scholar 

  24. H. H. Cho, Y. J. Kim, Y. S. Jo, K. Kitagawa, N. Araib, and Y. Lee, J. Anal. At. Spectrom., 16, 622–627 (2001).

    Article  Google Scholar 

  25. L. C. Peruchi, L. C. Nunes, G. G. A. de Carvalho, M. B. B. Guerra, E. Almeida, I. A. Rufini D. Santos, and F. J. Krug, Spectrochim. Acta B, 100, 129–136 (2014).

  26. S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, Anal. Chem., 80, No. 6, 1995–2000 (2008).

    Article  Google Scholar 

  27. H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and Sabsabi, J. Anal. At. Spectrom., 24, No. 10, 1421–1428 (2009).

  28. J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, J. Anal. At. Spectrom., 32, No. 11, 2292–2299 (2017).

    Article  Google Scholar 

  29. P. Y. Gao, P. Yang, R. Zhou, S. X. Ma, W. Zhang, Z. Q. Hao, S. S. Tang, X. Y. Li, and X. Y. Zeng, Appl. Opt., 57, No. 30, 8942–8946 (2018).

    Article  ADS  Google Scholar 

  30. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, Spectrochim. Acta B, 56, No. 6, 933–945 (2001).

    Article  ADS  Google Scholar 

  31. R. X. Yi, J. M. Li, X. Y. Yang, R. Zhou, H. W. Yu, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Anal. Chem., 89, No. 4, 2334–2337 (2017).

    Article  Google Scholar 

  32. C. M. Li, Z. Q. Hao, Z. M. Zou, R. Zhou, J. M. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Opt. Express, 24, No. 8, 7850–7857 (2016).

    Article  ADS  Google Scholar 

  33. J. M. Li, L. B. Guo, N. Zhao, X. Y. Yang, R. X. Yi, K. H. Li, Q. D. Zeng, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Talanta, 151, 234–238 (2016).

    Article  Google Scholar 

  34. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, Appl. Opt., 48, No. 13, 2551–2558 (2009).

    Article  ADS  Google Scholar 

  35. J. Kang, Y. R. Wang, R. H. Li, and Y. Q. Chen, Opt. Express, 26, No. 11, 14689–14699 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 312, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, Y. & Li, R. Direct and Sensitive Lead Analysis of Wheat Flour Using Laser-Induced Fluorescence Combined with Laser-Induced Breakdown Spectroscopy Under Low-Energy Ultraviolet Laser Ablation. J Appl Spectrosc 91, 411–418 (2024). https://doi.org/10.1007/s10812-024-01735-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01735-7

Keywords

Navigation