Skip to main content

Advertisement

Log in

Nitration of Tyrosine and Tyrosyl Residues in Myoglobin by the Action of Visible Light in the Presence of Riboflavin and Nitrite**

  • Published:
Journal of Applied Spectroscopy Aims and scope

The nitration of tyrosyl residues in proteins is considered a type of post-translational modification of proteins, indicating disruptions in the metabolic and signaling functions of nitric oxide NO and the development of oxidative nitrosative stress. We have examined the nonenzymatic pathway of protein nitration by the action of visible light in the presence of riboflavin and nitrite. Mass spectrometry was used to show that riboflavin-photosensitized redox processes involving nitrite and tyrosine or tyrosyl residues lead to nitration of residues Tyr-103 and Tyr-146 in the polypeptide chain of horse heart myoglobin. A possible role is discussed for riboflavin and other natural photosensitizers in the modification and damage of proteins when the body is exposed to intense visible light in the presence of nitrites in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Chandramouli and P.-Y. Qian, Hum. Genom. Proteom., 2009, Article ID 239204 (2009).

  2. Y. Zhang, B. R. Fonslow, B. Shan, M.C. Baek, and J. R. Yates III, Chem. Rev., 113, No. 4, 2343–2394 (2013).

    Article  Google Scholar 

  3. O. N. Jensen, Nat. Rev. Mol. Cell Biol., 7, No. 6, 391–403 (2006).

    Article  Google Scholar 

  4. S. Prabakaran, G. Lippens, H. Steen, and J. Gunawardena, Wiley Interdiscip. Rev. Syst. Biol. Med., 4, No. 6, 565–583 (2012).

    Google Scholar 

  5. G. A. Khoury, R. C. Baliban and C. A. Floudas, Sci. Rep., 1, No. 1, 1–5 (2011).

    Article  Google Scholar 

  6. E. Gianazza, J. Crawford, and I. Miller, Amino Acids, 33, 51–56 (2007).

    Article  Google Scholar 

  7. R. Radi, Proc. Natl. Acad. Sci. USA, 101, No. 12, 4003–4008 (2004).

    Article  ADS  Google Scholar 

  8. R. Radi, Proc. Natl. Acad. Sci. USA, 115, No. 23, 5839–5848 (2018).

    Article  ADS  Google Scholar 

  9. L. A. Abriata, A. Cassina, V. Tortora, M. Marin, J. M. Souza, L. Castro, A. J. Vila, and R. Radi, J. Biol. Chem., 284, No. 1, 17–26 (2009).

    Article  Google Scholar 

  10. C. Szabó, H. Ischiropoulos, and R. Radi, Nat. Rev. Drug Disc., 6, No. 8, 662–680 (2007).

    Article  Google Scholar 

  11. S. Herold, Free Radical Biol. Med., 36, No. 5, 565–579 (2004).

    Article  Google Scholar 

  12. J. B. Sampson, Y. Ye, H. Rosen, and J. S. Beckman, Arch. Biochem. Biophys., 356, No. 2, 207–213 (1998).

    Article  Google Scholar 

  13. K. Bian, Z. Gao, N. Weisbrodt, and F. Murad, Proc. Natl. Acad. Sci. USA, 100, No. 10, 5712–5717 (2003).

    Article  ADS  Google Scholar 

  14. A. van der Vliet, J. P. Eiserich, B. Halliwell, and C. E. Cross, J. Biol. Chem., 272, No. 12, 7617–7625 (1997).

    Article  Google Scholar 

  15. J. P. Eiserich, M. Hristova, C. E. Cross, A. D. Jones, B. A. Freeman, B. Halliwell, and A. van der Vliet, Nature, 391, No. 6665, 393–397 (1998).

    Article  ADS  Google Scholar 

  16. K. Kiline, A. Kiline, R. E. Wolf, and M. B. Grisham, Biochem. Biophys. Res. Commun., 285, No. 2, 273–276 (2001).

    Article  Google Scholar 

  17. I. Stepuro, A. V. Oparin, V. Stsiapura, S. Maskevich, and V. V. Titov, Biochemistry (Moscow), 77, No. 1, 41–55 (2012).

  18. S. Labor, V. Stepuro, I. Stepuro, and V. Smirnov, Izv. Nats. Akad. Nauk Belarusi, Ser. Biol. Nauk., No. 2, 55–65 (2017).

  19. T. Spolitak, P. F. Hollenberg, and D. P. Ballou, Arch. Biochem. Biophys., 600, 33–46 (2016).

    Article  Google Scholar 

  20. S. Nicolis, A. Pennati, R. Ronconi, L. Gianelli, and L. Casella, Chem. Eur. J., 10, No. 9, 2281–2290 (2004).

    Article  Google Scholar 

  21. S. Nicolis, A. Pennati, E. Perani, E. Monzani, A. M. Sanangelantoni, and L. Casella, Chem. Eur. J., 12, No. 3, 749–757 (2006).

    Article  Google Scholar 

  22. K. Shikama and Y. Sugawara, Eur. J. Biochem., 91, No. 2, 407–413 (1978).

    Article  Google Scholar 

  23. Y. Sugawara and K. Shikama, Eur. J. Biochem., 110, No. 1, 241–246 (1980).

    Article  Google Scholar 

  24. G.I. Tajima and K. Shikama, J. Biol. Chem., 262, No. 26, 12603–12606 (1987).

    Article  Google Scholar 

  25. M. R. Gunther, V. Sampath, and W. S. Caughey, Free Radical Biol. Med., 26, Nos. 11–12, 1388–1395 (1999).

    Article  Google Scholar 

  26. I. Stepuro and V. Stepuro, Oxidation of Thiamine Derivatives [in Russian], Lambert Academic Publishing (2014).

  27. H. Ischiropoulos, Arch. Biochem. Biophys., 356, No. 1, 1–11 (1998).

    Article  Google Scholar 

  28. M. S. Baptista, J. Cadet, A. Greer, and A. H. Thomas, Photochem. Photobiol., 97, No. 6, 1456–1483 (2021).

    Article  Google Scholar 

  29. M. S. Baptista, J. Cadet, P. Di Mascio, A. A. Gbogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, and A. H. Thomas, Photochem. Photobiol., 93, No. 4, 912–919 (2017).

    Article  Google Scholar 

  30. F. Wilkinson, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data, 22, No. 1, 113–262 (1993).

    Article  ADS  Google Scholar 

  31. C. S. Foote, in: W. Pryor (Ed.), Free Radicals in Biology, Academic Press, New York (2976), pp. 85–133.

  32. A. M. Edwards and E. Silva, J. Photochem. Photobiol. B: Biol., 63, No. 1, 126–131 (2001).

    Article  Google Scholar 

  33. M. Sinsińska-Rak and M. Sikorski, Chem. Eur. J., 20, No. 47, 15280–15291 (2014).

    Article  Google Scholar 

  34. T. Sinha, M. I. Naash, and M. R. Al-Ubaidi, Front. Cell Dev. Biol., 8, 861 (2020).

    Google Scholar 

  35. D. R. Cardoso, S. H. Libardi, and L. H. Skibsted, Food Funct., 3, No. 5, 487–502 (2012).

    Article  Google Scholar 

  36. C. Y. Lu and Y. Y. Liu, Biochim. Biophys. Acta Gen. Subj., 1571, No. 1, 71–76 (2002).

    Article  MathSciNet  Google Scholar 

  37. H. Ostdal, B. Daneshvar, and L. H. Skibsted, Free Radical Res., 24, No. 6, 429–438 (1996).

    Article  Google Scholar 

  38. G. S. Bayse, A. W. Michaels, and M. Morrison, Biochim. Biophys. Acta, Enzymol. Biol. Oxid., 284, No. 1, 34–42 (1972).

  39. S. O. Anderson, Acta Physiol. Scand. Suppl., 263, 1–81 (1966).

    Google Scholar 

  40. I. Stepuro, Prostaglandins Leukot. Essent. Fatty Acids, 72, No. 2, 115–127 (2005).

    Article  Google Scholar 

  41. E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland Publishing Company (1971).

  42. C. W. Fenwick, A. M. English, and J. F. Wishart, J. Am. Chem. Soc., 119, No. 20, 4758–4764 (1997).

    Article  Google Scholar 

  43. W. H. Koppenol, D. M. Stanbury, and P. L. Bounds, Free Rad. Biol. Med., 49, No. 3, 317–322 (2010).

    Google Scholar 

  44. D. M. Stanbury, in: A. G. Sykes (Ed.), Advanced Inorganic Chemistry, Academic Press, New York (1989), pp. 69–138.

    Google Scholar 

  45. M. D. Bartberger, W. Liu, E. Ford, K. M. Miranda, C. Switzer, J. M. Fukuto, P. J. Farmer, D. A. Wink, and K. N. Houk, Proc. Natl. Acad. Sci. USA, 99, No. 17, 10958–10964 (2002).

    Article  ADS  Google Scholar 

  46. A. Harriman, J. Phys. Chem., 91, No. 24, 6102–6102 (1987).

    Article  Google Scholar 

  47. D. A. Malencik and S. R. Anderson, Amino Acids, 25, No. 3, 233–247 (2003).

    Article  Google Scholar 

  48. A. Wright, W. A. Bubb, C. L. Hawkins, and M. J. Davies, Photochem. Photobiol., 76, No. 1, 35–46 (2002).

    Article  Google Scholar 

  49. P. Nagy, A. J. Kettle, and C. C. Winterbourn, J. Biol. Chem., 284, No. 22, 14723–14733 (2009).

    Article  Google Scholar 

  50. M. N. Möller, D. M. Hatch, H.Y. H. Kim, and N. A. Porter, J. Am, Chem. Soc., 134, No. 40, 16773–16780 (2012).

    Article  Google Scholar 

  51. J. R. Harbour and S. L. Issler, J. Am. Chem. Soc., 104, No. 3, 903–905 (1982).

    Article  Google Scholar 

  52. W. Koppenol, J. Moreno, W. A. Pryor, H. Ischiropoulos, and J. Beckman, Chem. Res. Toxicol., 5, No. 6, 834–842 (1992).

    Article  Google Scholar 

  53. M. Fontana, C. Blarzino, and L. Pecci, Amino Acids, 42, No. 5, 1857–1865 (2012).

    Article  Google Scholar 

  54. D. W. Batey and C. D. Eckhert, Anal. Biochem., 188, No. 1, 164–167 (1990).

    Article  Google Scholar 

  55. A. M. Alperstein, J. S. Ostrander, T. O. Zhang, and M. T. Zanni, Proc. Natl. Acad. Sci. USA, 116, No. 14, 6602–6607 (2019).

    Article  ADS  Google Scholar 

  56. G. Viteri, A. M. Edwards, J. De la Fuenta, and E. Silva, Photochem. Photobiol., 77, No. 5, 535–540 (2003).

    Article  Google Scholar 

  57. E. L. Padgett and S. B. Pruett, Biochem. Biophys. Res. Commun., 186, No. 2, 775–781 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Stsiapura.

Additional information

**Presented at the Second International Seminar on Molecular Spectroscopy and the Photochemistry of Macroheterocyclic Compounds, October 18–19, 2022, Minsk, Belarus.

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 3, pp. 423–433, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepuro, I.I., Ageiko, S.A., Stsiapura, V.I. et al. Nitration of Tyrosine and Tyrosyl Residues in Myoglobin by the Action of Visible Light in the Presence of Riboflavin and Nitrite**. J Appl Spectrosc 90, 543–553 (2023). https://doi.org/10.1007/s10812-023-01565-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01565-z

Keywords

Navigation