Skip to main content
Log in

Nonlinear Reflection of Light from a Planar Magnetoplasmonic Nanostructure

  • Published:
Journal of Applied Spectroscopy Aims and scope

The nonlinear equatorial Kerr effect in a planar nanostructure consisting of ferromagnetic and plasmon layers and located between two optically transparent dielectrics is studied theoretically. Calculations are made of nonlinear surface polarizations of interfaces between media that are sources of the second harmonic (SH), angular dependences of the intensities of the reflected SH and magnetic contrasts for different thicknesses of the noble metal layer. It is shown that when a p-polarization wave is incident on the nanostructure, the SH intensity is maximal in the region of the plasmon resonance of the basic frequency on the metal surface adjacent to the lower dielectric. A significant effect of the thickness and location of the plasmon layer on both the SH intensity and the magnetic contrast has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kalish and V. I. Belotelov, Fiz. Tverd. Tela, 58, No. 8, 1513–1521 (2016).

    Google Scholar 

  2. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, IOP Publishing, Bristol, Philadelphia (1997), pp. 28–30.

    Book  Google Scholar 

  3. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, J. Opt. A: Pure Appl. Opt., 11, 114023 (2009).

    Article  ADS  Google Scholar 

  4. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, Opt. Express, 18, 15635–15642 (2010); https://doi.org/10.1364/OE.18.015635.

    Article  ADS  Google Scholar 

  5. I. S. Maksymov, Nanomaterials, 5, 577–613 (2015); https://doi.org/10.3390/nano5020577.

    Article  Google Scholar 

  6. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, Adv. Opt. Mater., 7, 10–35 (2013); https://doi.org/10.1002/adom.201200011.

    Article  Google Scholar 

  7. N. Passarelli, L. A. Perez, and E. A. Coronado, ACS Nano, 8, No. 10, 9723–9728 (2014); https://doi.org/10.1021/nn505145v.

    Article  Google Scholar 

  8. Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, J. Opt. Soc. Am. B, 28, 2115–2122 (2011); https://doi.org/10.1364/JOSAB.28.002115.

    Article  ADS  Google Scholar 

  9. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, Phys. Rev. B, 64, 235422 (2001); https://doi.org/10.1103/PhysRevB.64.235422.

    Article  ADS  Google Scholar 

  10. E. Ferreiro-Vila, J. B. González-Díaz, R. Fermento, M. U. González, A. García-Martín, J. M. García-Martín, A. Cebollada, and G. Armelles, Phys. Rev. B, 80, 125132 (2009); https://doi.org/10.1103/PhysRevB.80.125132.

    Article  ADS  Google Scholar 

  11. N. Bonod, R. Reinisch, E. Popov, and M. Neviere, J. Opt. Soc. Am. B, 21, No. 4, 791–797 (2004); https://doi.org/10.1364/JOSAB.21.000791.

    Article  ADS  Google Scholar 

  12. P. Varytis, P. A. Pantazopoulos, and N. Stefanou, Phys. Rev. B, 93, 214423 (2016); https://doi.org/10.1103/PhysRevB.93.214423.

    Article  ADS  Google Scholar 

  13. R. K. Dani, H. Wang, S. H. Bossmann, G. Wysin, and V. Chikan, J. Chem. Phys., 135, 224502 (2011); https://doi.org/10.1063/1.3665138.

    Article  ADS  Google Scholar 

  14. P. Varytis, N. Stefanou, A. Christofi , and N. Papanikolaou, J. Opt. Soc. Am. B, 32, No. 6, 1063–1069 (2015); https://doi.org/10.1364/JOSAB.32.001063.

    Article  ADS  Google Scholar 

  15. T. M. Chmereva and M. G. Kucherenko, J. Appl. Spectrosc., 86, No. 4, 698–704 (2019); https://doi.org/10.1007/s10812-019-00881-7.

    Article  ADS  Google Scholar 

  16. B. Caballero, A. García-Martín, and J. C. Cuevas, Opt. Express, 23, No. 17, 22238–22249 (2015); https://doi.org/10.1364/OE.23.022238.

    Article  ADS  Google Scholar 

  17. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. Yakovlev, A. K. Zvezdin, and M. Bayer, Nat. Nanotechnol., 6, 370–376 (2011); https://doi.org/10.1038/nnano.2011.54.

    Article  ADS  Google Scholar 

  18. A. K. Zvezdin and N. F. Kubrakov, Zh. Eksp. Teor. Fiz., 116, No. 1, 141–156 (1999).

    Google Scholar 

  19. U. Pustogowa, W. Нubner, and K. Н. Bennemann, Phys. Rev. В, 49, 10031 (1994).

    Article  Google Scholar 

  20. I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, T. Rasing, and V. V. Temnov, ACS Photonics, 3, 179–183 (2016); https://doi.org/10.1021/acsphotonics.5b00504.

    Article  Google Scholar 

  21. V. V. Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, and K. A. Nelson, J. Opt., 18, 093002 (2016).

    Article  ADS  Google Scholar 

  22. V. V. Temnov, Nat. Photon., 6, 728–736 (2012); https://doi.org/10.1038/nphoton.2012.220.

    Article  ADS  Google Scholar 

  23. Y. R. Shen, Annu. Rev. Phys. Chem., 40, 327–350 (1989).

    Article  ADS  Google Scholar 

  24. B. Jerome and Y. R. Shen, Phys. Rev. E, 48, No. 6, 4556–4574 (1993); https://doi.org/10.1103/PhysRevE.48.4556.

    Article  ADS  Google Scholar 

  25. A. I. Efi mova, L. A. Golovan′, P. K. Kashkarov, V. M. Senyavin, and V. Yu. Timoshenko, Infrared Spectroscopy of Reduced Dimensional Systems [in Russian], Lan′, St. Petersburg (2016), pp. 22–24.

  26. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009), pp. 60–63.

    Google Scholar 

  27. R. Atkinson and W. R. Hendr, J. Mag. Soc. Jpn., 20, No. S1, 291–296 (1996).

    Google Scholar 

  28. D. Krause, C. W. Teplin, and C. T. Rogers, J. Appl. Phys., 96, No. 7, 3626–3634 (2004); https://doi.org/10.1063/1.1786341.

    Article  ADS  Google Scholar 

  29. S. Palomba and L. Novotny, Phys. Rev. Lett., 101, 056802 (2008); https://doi.org/10.1103/PhysRevLett.101.056802.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Chmereva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 383–391, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmereva, T.M., Kucherenko, M.G. Nonlinear Reflection of Light from a Planar Magnetoplasmonic Nanostructure. J Appl Spectrosc 88, 506–513 (2021). https://doi.org/10.1007/s10812-021-01201-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01201-8

Keywords

Navigation