Skip to main content
Log in

Infrared Line Collisional Parameters of PH3 in Hydrogen: Measurements with Second-Order Approximation of Perturbation Theory

  • Published:
Journal of Applied Spectroscopy Aims and scope

Room-temperature absorption by PH3–H2 mixtures in the ν2 and ν4 bands of phosphine (PH3) has been measured for low pressures. Fits of these spectra are made to determine the width of isolated lines and line mixing in a first-order Rosenkranz approximation. From the previous determinations, we deduce remarks on the lack of accuracy of predicting the collisional process. With the first-order Rosenkranz approximation, the collisional parameters are considered linear with pressure. In this work, we have considered spectra recorded for three doublets: A1 and A2 lines in the ν2 and ν4 bands of PH3 diluted with higher H2 pressure. We show that the line shifts are nonlinear with perturber pressures, which requires testing the fits of the recorded spectra with profiles developed in the secondorder approximation of the perturbation theory. Consequently, the first- and second-order mixing coefficients are determined and discussed. Throughout this study, we also show that the change in the intensity distribution is provided by the population exchange between low energy levels for the two components of doublets A1 and A2 lines and is described through the second-order mixing parameter. Thereby, we show the mixing effect on line width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Ridgway, L. Wallace, and G. R. Smith, Astrophys. J., 207, 1002–1006 (1976).

    Article  ADS  Google Scholar 

  2. R. A. Hanel, B. Conrath, M. Flasar, V. Kunde, P. Lowman, W. Maguire, J. Pearl, and J. Pirraglia, Science, 204, 972–976 (1979), doi: https://doi.org/10.1126/science.204.4396.972-a.

    Article  ADS  Google Scholar 

  3. V. Kunde, R. Hanel, W. Maguire, D. Gautier, J. P. Baluteau, A. Marten, A. Chedin, N. Husson, and N. Scott, Astrophys. J., 263, 443–467 (1982).

    Article  ADS  Google Scholar 

  4. H. P. Larson, U. Fink, H. A. Smith, and D. Scott Davies, Astrophys. J., 240, 327–337 (1980).

    Article  ADS  Google Scholar 

  5. J. P. Bouanich, J. Salem, H. Aroui, J. Walrand, and G. Blanquet, J. Quant. Spectrosc. Radiat. Transf., 84, 195–205 (2004), doi: https://doi.org/10.1016/S0022-4073(03)00143-2.

    Article  ADS  Google Scholar 

  6. J. Salem, H. Aroui, J. P. Bouanich, J. Walrand, and G. Blanquet, J. Mol. Spectrosc., 225, 174–181 (2004), doi: https://doi.org/10.1016/j.jms.2004.02.025.

    Article  ADS  Google Scholar 

  7. J. Salem, J. P. Bouanich, J. Walrand, H. Aroui, and G. Blanquet, J. Mol. Spectrosc., 228, 23–30 (2004), doi: https://doi.org/10.1016/j.jms.2004.06.015.

    Article  ADS  Google Scholar 

  8. J. Salem, J. P. Bouanich, J. Walrand, H. Aroui, and G. Blanquet, J. Mol. Spectrosc., 232, 247–254 (2005), doi: https://doi.org/10.1016/j.jms.2005.04.014.

    Article  ADS  Google Scholar 

  9. J. P. Bouanich, J. Walrand, and G. Blanquet, J. Mol. Spectrosc., 232, 40–46 (2005), doi: https://doi.org/10.1016/j.jms.2005.02.005.

    Article  ADS  Google Scholar 

  10. J. P. Bouanich and G. Blanquet, J. Mol. Spectrosc., 241, 186–191 (2007), doi: https://doi.org/10.1016/j.jms.2006.12.006.

    Article  ADS  Google Scholar 

  11. J. Salem, G. Blanquet, M. Lepère, and H. Aroui, J. Mol. Spectrosc., 297, 58–61 (2014), doi: org/10.1016/j.jms.2014.01.003.

  12. J. Salem, G. Blanquet, M. Lepère, and H. Aroui, J. Quant. Spectrosc. Radiat. Transf., 173, 34–39 (2016), https://doi.org/10.1016/j.jqsrt.2016.01.010.

    Article  ADS  Google Scholar 

  13. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepère, J. Mol. Spectrosc., 221, 80–92 (2003), doi: https://doi.org/10.1016/S0022-2852(03)00178-4.

    Article  ADS  Google Scholar 

  14. N. Maaroufi , F. Kwabia Tchana, X. Landsheere, and H. Aroui, J. Quant. Spectrosc. Radiat. Transf., 219, 383–392 (2018), https://doi.org/10.1016/j.jqsrt.2018.09.001.

    Article  ADS  Google Scholar 

  15. F. Hmida, S. Galalou, F. Kwabia Tchana, M. Rotger, and H. Aroui, J. Quant. Spectrosc. Radiat. Transf., 189, 351–360 (2017), https://doi.org/10.1016/j.jqsrt.2016.12.015.

    Article  ADS  Google Scholar 

  16. L. Fissiaux, G. Blanquet, and M. Lepère, J. Quant. Spectrosc. Radiat. Transf., 113, 1233–1239 (2012), doi: https://doi.org/10.1016/j.jqsrt.2012.01.021.

    Article  ADS  Google Scholar 

  17. F. Thibault, J. Boissoles, R. Le Doucen, R. Farrenq, M. Morillon-Chapey, and C. Boulet, J. Chem. Phys., 97, 4623–4632 (1992), doi: https://doi.org/10.1063/1.463865.

    Article  Google Scholar 

  18. J. Salem, G. Blanquet, M. Lepère, and R. ben Younes, Mol. Phys., 116, 1280–1289 (2018), doi: 10.1080/00268976.2017.1423125.

  19. E. W. Smith, J. Chem. Phys., 74, 6658–6673 (1981), https://doi.org/10.1063/1.441112.

    Article  Google Scholar 

  20. P. W. Rosenkranz, IEEE. Trans. Antenn. Propag., 23, 498–506 (1975), doi: https://doi.org/10.1109/TAP.1975.1141119.

    Article  ADS  Google Scholar 

  21. E. Baeten, G. Blanquet, J. Walrand, and C. P. Courtoy, Can. J. Phys., 62, 1286–1292 (1984), doi: https://doi.org/10.1139/p84-174.

    Article  ADS  Google Scholar 

  22. M. Lepère, G. Blanquet, J. Walrand, and J. P. Bouanich, J. Mol. Spectrosc., 180 218–226 (1996), https://doi.org/10.1006/jmsp.1996.0245.

    Article  ADS  Google Scholar 

  23. W. H. Press, B. P. Flannery, S. A. Tendolsky, and W. T. Vetterling, Numerical Recipes — The Art of Scientific Computing (FORTRAN Version), Cambridge Univ. Press, Cambridge (1992).

    Google Scholar 

  24. Hitran Data Bases, http://www.hitran.org/results/5a1856e6.par.

  25. G. Blanquet, J. Walrand, and J. P. Bouanich, J. Mol. Spectrosc., 159, 137–143 (1993), https://doi.org/10.1006/jmsp.1993.1112.

    Article  ADS  Google Scholar 

  26. J. Humlíček, J. Quan t. Spectrosc. Radiat. Transf., 21, 309–313 (1979), 10.1016/0022-4073(79)90062-1.

  27. A. S. Pine, J. Quant. Spectrosc. Radiat. Transf., 57, 145–155 (1997), https://doi.org/10.1016/S0022-4073(96)00129-X.

    Article  ADS  Google Scholar 

  28. L. R. Brown, R. L. Sams, I. Kleiner, C. Cottaz, and L. Sagui, J. Mol. Spectrosc., 215, 178–203 (2002), doi: https://doi.org/10.1016/S0022-2852(02)98638-8.

    Article  ADS  Google Scholar 

  29. V. M. Devi, D. C. Benner, I. Kleiner, R. L. Sams, and L. N. Fletcher, J. Mol. Spectrosc., 302, 17–33 (2014), https://doi.org/10.1016/j.jms.2014.06.003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Charguia.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 351–359, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, J., Charguia, R. & Younes, R.b. Infrared Line Collisional Parameters of PH3 in Hydrogen: Measurements with Second-Order Approximation of Perturbation Theory. J Appl Spectrosc 88, 474–482 (2021). https://doi.org/10.1007/s10812-021-01196-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01196-2

Keywords

Navigation