Skip to main content
Log in

Efficient One-Pot Microwave-Assisted Synthesis, Crystallographic, and Spectroscopic Characterization of Novel Antitumor and Antimicrobial (3E)-5-Hydroxy-1-Isopropyl-3-[(5-Methyl-2-Thienyl)Methylene]-5-Phenylpyrrolidin-2-One

  • Published:
Journal of Applied Spectroscopy Aims and scope

A microwave-assisted, chemoselective synthesis of novel antitumor and antimicrobial (3E)-5-hydroxy-1-isopropyl-3-[(5-methyl-2-thienyl)methylene]-5-phenylpyrrolidin-2-one has been achieved via the solvent-free one-pot reaction of (3E)-3-[(5-methyl-2-thienyl)methylene]-5-phenylfuran-2(3H)-one with isopropylamine. The product is obtained in significant purity and yield under ecofriendly reaction conditions. The microwave technique surpasses conventional thermal heating approaches by accelerating the reaction in a clean, ecofriendly manner that avoids the use of organic or toxic solvents. The structural formula of the product is confirmed by crystallographic and spectroscopic characterization. X-ray single crystal diffraction reveals that the compound crystallizes in an orthorhombic centrosymmetric crystal form, with unambiguous assignment of the E-configuration for the C3–Cthienyl bond. The synthesized molecules have two centers of chirality in the hydroxypyrrolidin-2-one ring: 1) the carbon atom attached to nitrogen, the hydroxyl group, and the phenyl ring; 2) the nitrogen atom attached to the carbonyl carbon R3 group, the chiral carbon in the ring, and the covalent bond bearing the lone pair of electrons. The molecular geometry is also optimized using density functional theory calculations, and the results obtained are in good agreement with the experimental data. Evaluation of the biological and medicinal activity of the compound affords similar results to the reference data in antitumor treatment of human colon and breast cells, which can be attributed to the presence of the hydroxyl group, the heterocyclic motifs, and sulfur. Calculation of the molecular electrostatic potential locates the most electrophilic site near the hydroxyl group attached to the heterocyclic ring, which is consistent with the bioactivity results. The frontier molecular orbitals are also determined, finding that the energy difference between highest occupied molecular orbital and lowest unoccupied molecular orbital is −0.15228 eV. A mechanism is proposed in which an intramolecular nucleophilic attack occurs on the carbonyl carbon by the lone pair of electrons on the nitrogen atom, leading to ring closure with proton transfer to oxygen and final formation of the hydroxyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. O. Koz’minykh, N. M. Igidov, S. S. Zykova, V. É. Kolla, N. S. Shuklina, and T. F. Odegova, Pharm. Chem. J., 36, 188–191 (2002).

    Article  Google Scholar 

  2. T. Michael, A. Michael, T. Andreas, H. Ulrich, B. Mirko, and N. A. Johannes, Patent WO2008055945(A1) (2008).

  3. Y. Geng, X. Wang, L. Yang, H. Sun, Y. Wang, Y. Zhao, R. She, M.-X. Wang, D.-X. Wang, and J. Tang, PLoS One, 10, 1–15 (2015).

    Google Scholar 

  4. A. Pendri, T. L. Troyer, M. J. Sofia, M. A. Walker, B. N. Naidu, J. Banville, N. A. Meanwell, I. Dicker, Z. Lin, M. Krystal, and S. W. Gerritz, J. Comb. Chem., 12, 84–90 (2010).

    Article  Google Scholar 

  5. K. Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, and D. Ye, Bioorg. Med. Chem. Lett., 21, 6724–6727 (2011).

    Article  Google Scholar 

  6. V. L. Gein, M. N. Armisheva, N. A. Rassudikhina, M. I. Vakhrin, and E. V. Voronina, Pharm. Chem. J., 45, 162–164 (2011).

    Article  Google Scholar 

  7. V. L. Gein, V. A. Mihalev, N. N. Kasimova, E. V. Voronina, M. I. Vakhrin, and E. B. Babushkina, Pharm. Chem. J., 41, 208–210 (2007).

    Article  Google Scholar 

  8. V. L. Gein, V. V. Yushkov, N. N. Kasimova, N. S. Shuklina, M. Y. Vasil’eva, and M. V. Gubanova, Pharm. Chem. J., 39, 484–487 (2005).

    Article  Google Scholar 

  9. M. S. F. Franco, G. A. Casagrande, C. Raminelli, S. Moura, M. Rossatto, F. H. Quina, C. M. P. Pereira, A. F. C. Flores, and L. Pizzuti, Synth. Commun., 45, 692–701 (2015).

    Article  Google Scholar 

  10. M. Anada and S. Hashimoto, Tetrahedron Lett., 39, 79–82 (1998).

    Article  Google Scholar 

  11. D.-R. Choi, K.-Y. Lee, Y.-S. Chung, J.-E. Joo, Y.-H. Kim, C.-Y. Oh, Y.-S. Lee, and W.-H. Ham, Arch. Pharm. Res., 28, 151–158 (2005).

    Article  Google Scholar 

  12. L. E. Burgess and A. I. Meyers, J. Org. Chem., 57, 1656–1662 (1992).

    Google Scholar 

  13. L. E. Overman and T. P. Remarchuk, J. Am. Chem. Soc., 124, 12–13 (2002).

    Article  Google Scholar 

  14. V. Singh, R. Saxena, and S. Batra, J. Org. Chem.,70, 353–356 (2005).

    Article  Google Scholar 

  15. R. Sarkar and C. Mukhopadhyay, Tetrahedron Lett., 54, 3706–3711 (2013).

    Article  Google Scholar 

  16. J. Sun, Q. Wu, E.-Y. Xia, and C.-G. Yan, Eur. J. Org. Chem., 16, 2981–2986 (2011).

    Article  Google Scholar 

  17. Q. Zhu, H. Jiang, J. Li, S. Liu, C. Xia, and M. Zhang, J. Comb. Chem., 11, 685–696 (2009).

    Article  Google Scholar 

  18. B. M. Awad, H. A. Saad, E. M. Nassar, and E. M. Azmy, J. Am. Sci., 9, 566–577 (2013).

    Google Scholar 

  19. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, J. Natl. Cancer Inst., 82, 1107–1112 (1990).

    Article  Google Scholar 

  20. H. D. Flack and G. Bernardinelli, Chirality, 20, 681–690 (2008).

    Article  Google Scholar 

  21. N. R. Guirguis, B. M. Awad, and H. A. Saad, J. Pract. Chem., 332, 414–418 (1990).

    Article  Google Scholar 

  22. N. R. Guirguis, B. M. Awad, and H. A. Saad, Liebigs Ann. Chem., No. 6, 1003–1011 (1986).

    Article  Google Scholar 

  23. A. Lausi, M. Polentarutti, S. Onesti, J. R. Plaisier, E. Busetto, G. Bais, L. Barba, A. Cassetta, G. Campi, D. Lamba, A. Pifferi, S. C. Mande, D. D. Sarma, S. M. Sharma, and G. Paolucci, Eur. Phys. J. Plus., 130, 1–8 (2015).

    Article  Google Scholar 

  24. W. Kabsch, Acta Crystallogr. Sect. D Biol. Crystallogr., 66, 125–132 (2010).

    Article  Google Scholar 

  25. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 71, 3–8 (2015).

    Article  Google Scholar 

  26. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, and D. J. Watkin, J. Appl. Crystallogr., 36, 1487–1489 (2003).

    Article  Google Scholar 

  27. A. L. Spek, Acta Crystallogr. Sect. D Biol. Crystallogr., 65, 148–155 (2009).

    Article  Google Scholar 

  28. L. J. Farrugia, J. Appl. Crystallogr., 45, 849–854 (2012).

    Article  Google Scholar 

  29. K. Brandenburg, Cryst. Impact GbR (2012).

  30. I. J. Bruno, J. C. Cole, M. Kessler, J. Luo, W. D. S. Motherwell, L. H. Purkis, B. R. Smith, R. Taylor, R. I. Cooper, S. E. Harris, and A. G. Orpen, J. Chem. Inform. Comput. Sci., 44, 2133–2144 (2004).

    Google Scholar 

  31. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 724–728 (1971).

    Article  ADS  Google Scholar 

  32. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Google Scholar 

  33. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc, Pittsburgh, P.A. (1996).

    Google Scholar 

  34. Gaussian09, Rev., Gaussian, Inc., Wallingford CT (2009).

  35. A. Frisch, A. B. Nielson, and A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburgh, Pennsylvania (2005).

    Google Scholar 

  36. B. D. Joshi, R. Mishra, P. Tandon, A. C. Oliveira, and A. P. Ayala, J. Mol. Struct., 1058, 31–40 (2014).

    Article  ADS  Google Scholar 

  37. Munoz-Caro, Nino, Senent, Leal, and Ibeas, J. Org. Chem., 65, 405–410 (2000).

  38. S. Radhakrishnan, R. Parthasarathi, V. Subramanian, and N. Somanathan, Comput. Mater. Sci., 37, 318–322 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoun S. M. Abd El-Kareem.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, p. 334, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmy, E.M., Awad, B.M., Hefni, H.A. et al. Efficient One-Pot Microwave-Assisted Synthesis, Crystallographic, and Spectroscopic Characterization of Novel Antitumor and Antimicrobial (3E)-5-Hydroxy-1-Isopropyl-3-[(5-Methyl-2-Thienyl)Methylene]-5-Phenylpyrrolidin-2-One. J Appl Spectrosc 88, 414–423 (2021). https://doi.org/10.1007/s10812-021-01189-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01189-1

Keywords

Navigation