Skip to main content
Log in

Spectroscopic Study of Cyano-Bridged Hetero-Metallic Polymeric Complexes with 2-Methylpyrazine: [M(NH3)(2mpz)Ni(CN)4nH2O (M(II) = Cu or Zn)

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have synthesized new cyano-bridged hetero-metallic polymeric complexes [M(NH3)(2mpz)Ni(CN)4]·nH2O in the powder form for the fi rst time. Their structures were determined by elemental and spectral (infrared and Raman) analyses. In the complexes, the center of the nickel atom binds with four cyano ligands and shows a square planar geometry. In addition, the metal atoms (Cu(II) or Zn(II)) are linked to the ring nitrogen atom of one 2mpz ligand, one ammonia ligand, and four bridging cyano groups and show a distorted octahedral geometry. The spectral features suggest that these complexes are similar to each other and their structures consist of |M – Ni(CN)4|∞ type polymeric layers with the ligands (2mpz and ammonia) bound to the metal atom (M).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cernak, M. Orendac, I. Potocnak, J. Chomic, A. Orendacova, and J. Skorsepa, Coord. Chem. Rev., 224, Nos. 1–2, 51–66 (2002).

    Article  Google Scholar 

  2. D. J. Darensbourg and A. L. Phelps, Inorg. Chim. Acta, 357, No. 5, 1603–1607 (2004).

    Article  Google Scholar 

  3. M. Şenyel, T. R. Sertbakan, G. Kürkçüoğ, E. Kasap, and Z. Kantarci, J. Incl. Phenom. Macrocycl. Chem., 39, Nos. 1–2, 175–180 (2001).

    Article  Google Scholar 

  4. T. Mallah, S. Thiébaut, M. Verdaguer, and P. Veillet, Science, 262, 1554–1557 (1993).

    Article  ADS  Google Scholar 

  5. M. V. Bennett, L. G. Beauvais, M. P. Shores, and J. R. Long, J. Am. Chem. Soc., 123, No. 33, 8022–8032 (2001).

    Article  Google Scholar 

  6. M. Kämper, M. Wagner, and A. Weiss, Angew. Chem. Int. Ed. Engl., 18, No. 6, 486–487 (1979).

    Article  Google Scholar 

  7. J. Davies, A. Dempster, and S. Suzuki, Spectrochim. Acta A: Mol. Spectrosc., 30, No. 6, 1183–1192 (1974).

    Article  ADS  Google Scholar 

  8. T. Akyüz, S. Akyüz, and J. E. D. Davies, J. Incl. Phenom. Mol. Recogn. Chem., 9, No. 4, 349–354 (1990).

    Article  Google Scholar 

  9. Z. Kartal and E. Sayın, J. Mol. Struct., 994, Nos. 1–3, 170–178 (2011).

    Article  ADS  Google Scholar 

  10. M. Şenyel, C. Parlak, and Ö. Alver, Spectrochim. Acta A, 70, No. 2, 367–375 (2008).

    Article  ADS  Google Scholar 

  11. S. Akyüz, A. Dempster, R. Morehouse, and S. Suzuki, J. Mol. Struct., 17, No. 1, 105–125 (1973).

    Article  ADS  Google Scholar 

  12. D. Karaağaç, G. S. Kürkçüoğlu, M. Şenyel, and T. Hökelek, J. Mol. Struct., 1176, 641–649 (2019).

    Google Scholar 

  13. Ş. A. Korkmaz, A. Karadağ, A. Aydın, Y. Yerli, and M. S. Soylu, Inorg. Chim. Acta, 453, 154–168 (2016).

    Article  Google Scholar 

  14. J. Cernak, J. Kuchar, M. Stolarova, M. Kajnakova, M. Vavra, I. Potocnak, L.R. Falvello, and M. Tomas, Transition Met. Chem., 35, No. 6, 737–744 (2010).

    Article  Google Scholar 

  15. M. Vavra, I. Potočňák, M. Marhefková, R. Boča, and Ľ. Dlháň, Polyhedron, 48, 227–236 (2012).

    Article  Google Scholar 

  16. H. Endrédi, F. Billes, and G. Keresztury, J. Mol. Struct. THEOCHEM, 677, Nos. 1–3, 211–225 (2004).

    Article  Google Scholar 

  17. J. F. Arenas, J. T. Lopez-Navarrete, J. C. Otero, J. I. Marcos, and A. Cardenete, J. Chem. Soc., Faraday Trans., 81, No. 3, 405–415 (1985).

  18. G. Sbrana, V. Schettino, and R. Righini, J. Chem. Phys., 59, No. 5, 2441–2450 (1973).

    Article  ADS  Google Scholar 

  19. V. T. Yilmaz, E. Senel, E. Guney, and C. Kazak, Inorg. Chem. Commun., 11, No. 11, 1330–1333 (2008).

    Article  Google Scholar 

  20. D. M. Ciurtin, M. D. Smith, and H.-C. Zur Loye, Inorg. Chim. Acta, 324, Nos. 1–2, 46–56 (2001).

    Article  Google Scholar 

  21. M. A. Goher and F. A. Mautner, Polyhedron, 18, No. 13, 1805–1810 (1999).

    Article  Google Scholar 

  22. G. S. Kürkçüoğlu, O. Z. Yeşilel, İ. Kavlak, and O. Büyükgüngör, Struct. Chem., 19, No. 6, 879–888 (2008).

    Article  Google Scholar 

  23. C. Parlak and M. Şenyel, Spectrochim. Acta A, 82, No. 1, 383–388 (2011).

    Article  ADS  Google Scholar 

  24. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Wiley-Interscience (2009).

    Google Scholar 

  25. S. Suzuki, W. Orville-Thomas, A. Sopková, J. Skorsepa, J. Mol. Struct., 54, 1–9 (1979).

    Google Scholar 

  26. R. McCullough, L. Jones, and G. Crosby, Spectrochim. Acta, 16, No. 8, 929–944 (1960).

    Article  ADS  Google Scholar 

  27. Z. Kartal, Spectrochim. Acta A, 152, 577–583 (2016).

    Article  ADS  Google Scholar 

  28. A. Ünal, Ş. Şentürk, and M. Şenyel, Vib. Spectrosc., 51, No. 2, 299–307 (2009).

    Article  Google Scholar 

  29. T. İzgi, C. Parlak, and M. Şenyel, Spectrochim. Acta A, 79, No. 2, 308–311 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karaağaç.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, pp. 187–193, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaağaç, D. Spectroscopic Study of Cyano-Bridged Hetero-Metallic Polymeric Complexes with 2-Methylpyrazine: [M(NH3)(2mpz)Ni(CN)4nH2O (M(II) = Cu or Zn). J Appl Spectrosc 88, 250–256 (2021). https://doi.org/10.1007/s10812-021-01165-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01165-9

Keywords

Navigation