Skip to main content
Log in

Plasmonic Sensor for Detection of β-Lactam Antibiotics based on the Conjugated Antibody with Gold Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study aims to detect β-lactam antibiotics using a conjugated antibody with gold nanoparticles (GNPs). For this purpose, the gold nanoparticles synthesized from Chinese lettuce leaf extract (as reductant) were used for the colorimetric detection of β-lactam antibiotics (such as ampicillin, amoxicillin, penicillin G, oxacillin, and carbenicillin). XRD, FTIR spectroscopy, TEM, and dynamic light scattering were utilized to detect the crystallinity, to identify functional groups involved in the synthesis of GNPs, and to measure the size of the GNPs; pH 8 and a concentration of 8.4 μg of antibody at 1 mL GNPs solution were selected as the best pH and concentration of antibody for the conjugation of antibody with GNPs. The maximum wavelengths of the colloidal GNPs, conjugation of antibody with GNPs, and detection of antibiotics (from 1 nM to 1 mM) with GNPs–PAb were recorded using a micro-volume spectrophotometer system. The results indicated that the localized surface plasmon resonance spectrometer absorption wavelength of GNPs red-shifted with increasing concentration of β-lactam antibiotics. With increasing concentration of ampicillin, penicillin G, and carbenicillin, the wavelength of maximum changed, and after saturation of antibiotics concentration, the curve reaches a plateau. This indicated that the antibody showed similar behavior in the detection of these antibiotics. But regarding amoxicillin, the saturation concentration is much higher, indicating that the antibody was more specific for its detection. In contrast, for oxacillin, saturation occurred very soon, which demonstrated that the antibody had an extremely low detection capability for this antibiotic. Finally, the results showed that the antibody was sensitive to 1 nM of the five β-lactam antibiotics studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tamošiūnas and A. Padarauskas, Chromatographia, 67, 783–788 (2008), https://doi.org/10.1365/s10337-008-0579-5.

    Article  Google Scholar 

  2. T. Śniegocki, A. Posyniak, and J. Żmudzki, Bull. Vet. Inst. Pulawy, 51, 59–64 (2007).

    Google Scholar 

  3. W. B. Shim, J. S. Kim, M. G. Kim, and D. H. Chung, J. Food Sci., 78, 1575–1581 (2013).

    Article  Google Scholar 

  4. N. V. Gasilova and S. A. Eremin, J. Anal. Chem., 65, 255–259 (2010), https://doi.org/10.1134/s1061934810030081.

    Article  Google Scholar 

  5. F. Conzuelo, M. Gamella, S. Campuzano, D. G. Pinacho, A. J. Reviejo, M. P. Marco, and J. M. Pingarrón, Biosens. Bioelectron., 36, 81–88 (2012), https://doi.org/10.1016/j.bios.2012.03.044.

    Article  Google Scholar 

  6. E. Kazemi, S. Dadfarnia, A. Mohammad, H. Shabani, M. R. Fattahi, and J. Khodaveisi, Spectrochim. Acta A : Mol. Biomol. Spectrosc., 187, 30–35 (2017), https://doi.org/10.1016/j.saa.2017.06.023.

    Article  ADS  Google Scholar 

  7. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, and H. Zhang, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 107, 24–30 (2013), https://doi.org/10.1016/j.saa.2013.01.014.

    Article  ADS  Google Scholar 

  8. P. Cyganowski, D. Jermakowicz-Bartkowiak, P. Jamroz, P. Pohl, and A. Dzimitrowicz, Colloids Surf. A, 582, 123886 (2019), https://doi.org/10.1016/j.colsurfa.2019.123886.

    Article  Google Scholar 

  9. K. Hamaguchi, H. Kawasaki, and R. Arakawa, Colloids Surf. A, Physicochem. Eng. Asp., 367, 167–173 (2010), https://doi.org/10.1016/j.colsurfa.2010.07.006.

    Article  Google Scholar 

  10. Y. Huang, K. Ma, K. Kang, M. Zhao, Z. Zhang, and Y. Liu, Colloids Surf. A, Physicochem. Eng. Asp., 421, 101–108 (2013), https://doi.org/10.1016/j.colsurfa.2012.12.050.

    Article  Google Scholar 

  11. X. Li, L. Jiang, Q. Zhan, J. Qian, and S. He, Colloids Surf. A, Physicochem. Eng. Asp., 332, 172–179 (2009), https://doi.org/10.1016/j.colsurfa.2008.09.009.

    Article  Google Scholar 

  12. S. Golmohammadi and M. Etemadi, J. Appl. Spectrosc., 86, 925 (2019), https://doi.org/10.1007/s10812-019-00917-y.

    Article  ADS  Google Scholar 

  13. C. Karami, A. Alizadeh, M. A. Taher, Z. Hamidi, and B. Bahrami, J. Appl. Spectrosc., 83, 687–693 (2016), https://doi.org/10.1007/s10812-016-0349-3

    Article  Google Scholar 

  14. G. P. Sahoo, H. Bar, D. K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, and A. Misra, Colloids Surf. A, Physicochem. Eng. Asp., 375, 30–34 (2011), https://doi.org/10.1016/j.colsurfa.2010.11.033.

    Article  Google Scholar 

  15. M. Singh, I. Sinha, A. K. Singh, and R. K. Mandal, Colloids Surf. A, Physicochem. Eng. Asp., 384, 668–674 (2011), https://doi.org/10.1016/j.colsurfa.2011.05.037.

    Article  Google Scholar 

  16. P. Vaccarello, L. Tran, J. Meinen, C. Kwon, Y. Abate, and Y. Shon, Colloids Surf. A, Physicochem. Eng. Asp., 402, 146–151 (2012), 10.1016/j.colsurfa.2012.03.041.

  17. Y. Yang, Q. Cui, Q. Cao, and L. Li, Colloids Surf. A, Physicochem. Eng. Asp., 503, 28–33 (2016), 10.1016/j.colsurfa.2016.05.026.

  18. J. Ye, K. Bonroy, F. Frederix, J. D. Haen, G. Maes, and G. Borghs, Colloids Surf. A, Physicochem. Eng. Asp., 321, 313–317 (2008), 10.1016/j.colsurfa.2008.01.028.

  19. K. S. McKeating, M. Couture, M. P. Dinel, S. Garneau-Tsodikova, and J. F. Masson, Analyst, 141, 5120–5126 (2016), https://doi.org/10.1039/c6an00540c.

    Article  ADS  Google Scholar 

  20. L. Chen, Z. Wang, M. Ferreri, J. Su, and B. Han, J. Agric. Food Chem., 57, 4674–4679 (2009), https://doi.org/10.1021/jf900433d.

    Article  Google Scholar 

  21. A. Singh, M. Sharma, and A. Batra, J. Optoelectron. Biomed. Mater., 5, 27–32 (2013).

    Google Scholar 

  22. C. George, I. Sergiel, A. Dzimitrowicz, P. Jamro, T. Kozlecki, and P. Pohl, Preparation and Characterization of Gold Nanoparticles Prepared with Aqueous Extracts of Lamiaceae Plants and the Effect of Follow-up Treatment with Atmospheric Pressure Glow Microdischarge (2016), https://doi.org/10.1016/j.arabjc.2016.04.004.

  23. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen, Nanotechnology, 80, 285–290 (2007), 10.1088/0957-4484/18/10/105104.

  24. J. M. B. Res, G. Oza, S. Pandey, A. Gupta, R. Kesarkar, M. Sharon, and W. Ambernath, J. Microbiol. Biotechnol., 2, 511–515 (2012).

    Google Scholar 

  25. C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, and S. Zhu, Sensors (Switzerland), 14, 21872–21888 (2014), https://doi.org/10.3390/s141121872.

    Article  Google Scholar 

  26. A. Aljabali, Y. Akkam, M. Al Zoubi, K. Al-Batayneh, B. Al-Trad, O. Abo Alrob, A. Alkilany, M. Benamara, and D. Evans, Nanomaterials, 8, 1–15 (2018). https://doi.org/10.3390/nano8030174.

    Article  Google Scholar 

  27. H. Mohammadi, M. Hafezi, S. Hesaraki, and M. M. Sepantafar, Nanomed. J., 2, 217–222 (2015), https://doi.org/10.7508/nmj.

    Article  Google Scholar 

  28. N. T. Ndeh, S. Maensiri, and D. Maensiri, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, aa724a (2017), 10.1088/2043-6254/aa724a.

  29. S. Goldmeier, K. De Angelis, K. R. Casali, C. Vilodre, F. Consolim-Colombo, A. B. Klein, R. Plentz, P. Spritzer, and M. C. Irigoyen, Am. J. Transl. Res., 6, 91–101 (2014), https://doi.org/10.1016/j.saa.2011.02.051.

    Article  Google Scholar 

  30. S. A. Aromal, V. K. Vidhu, and D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 85, 99–104 (2012), https://doi.org/10.1016/j.saa.2011.09.035.

    Article  ADS  Google Scholar 

  31. G. M. Corp, C. Astro, and G. M. C. Safari, Environ. Sci. Technol., 37, 3458–3466 (2003).

    Article  Google Scholar 

  32. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir, 21, 1931–1936 (2005), https://doi.org/10.1021/la0477183.

    Article  Google Scholar 

  33. D. K. Singh, R. Jagannathan, P. Khandelwal, P. M. Abraham, and P. Poddar, Nanoscale, 5, 1882–1893 (2013), https://doi.org/10.1039/c2nr33776b.

    Article  ADS  Google Scholar 

  34. C. N. R. Rao, and A. K. Cheetham, J. Mater. Chem., 11, 2887–2894 (2001), https://doi.org/10.1039/b105058n.

    Article  Google Scholar 

  35. L. Liu, Y. Chen, S. Song, Q. Zheng, X. Wu, and H. Kuang, Food Agric. Immunol., 28, 1283–1292 (2017), https://doi.org/10.1080/09540105.2017.1337084.

    Article  Google Scholar 

  36. H. Zhang, W. Li, Z. Sheng, H. Han, and Q. He, Analyst, 135, 1680–1685 (2010), https://doi.org/10.1039/c0an00025f.

    Article  ADS  Google Scholar 

  37. Ch. Wang, J. Liu, X. Han, Ch. Liu, Y. Tian, and N. Lhou, Analyt. Methods (2017), https://doi.org/10.1039/C7AY01685A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Khiabani.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, p. 174, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamirzaei, M., Khiabani, M.S., Hamishehkar, H. et al. Plasmonic Sensor for Detection of β-Lactam Antibiotics based on the Conjugated Antibody with Gold Nanoparticles. J Appl Spectrosc 88, 233–241 (2021). https://doi.org/10.1007/s10812-021-01162-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01162-y

Keywords

Navigation