Skip to main content

Advertisement

Log in

Nutritional and health promoting perspectives of Monostroma spp. (Chlorophyta): A systematic review

  • Review
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Green seaweeds, particularly species of the genus Monostroma, have gained recognition for their health-promoting potential, attributed to their rich content of polysaccharides, polyphenols, carotenoids, flavonoids, vitamins, and macro- and micronutrients, all of which show a wide range of bioactive properties. This review encompasses a total of 72 articles, selected in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The compounds present in Monostroma spp., in addition to their nutritional and chemical compounds, are associated with a number of health-promoting activities. However, it is notable that among the literature reviewed for bio-functionalities, a considerable proportion of studies were conducted in vitro (66%), followed by in vivo studies (29%), with clinical trials accounting for a much smaller fraction (5%). The mechanisms underlying the health-beneficial effects in biological systems require further in-depth exploration and characterization to facilitate future translational research leading to clinical trials. These clinical trials are an essential step in advancing seaweed-based functional food ingredients into the industrial realm. As of now, research focusing on bioactive compounds derived from Monostroma is relatively scarce. This review serves as a resource, offering insights into the nutritional and functional properties of Monostroma species. It can be a valuable tool for food scientists and engineers as they embark on future research involving Monostroma and the development of seaweed-based food and nutraceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon request from the corresponding author.

References

  • Aguilera J, Dummermuth A, Karsten U, Schriek R, Wienck C (2002) Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441

    Article  Google Scholar 

  • Al-fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5:127–136

    CAS  Google Scholar 

  • Arasaki S, Arasaki T (1983) Low calorie, high nutrition vegetables from the sea to help you look and feel better. Japan Publication, Tokyo.

  • Arshad MA, Khurshid U, Ahmad S, Ijaz S, Rashid F, Azam R (2014) Review on methods used to determine antioxidant activity. Int J Multidiscip Res Dev 1:41–46

    Google Scholar 

  • Bashir KMI, Lee H-J, Mansoor S, Jahn A, Cho M-G (2021) The effect of chromium on photosynthesis and lipid accumulation in two chlorophyte microalgae. Energies 14:2260

    Article  CAS  Google Scholar 

  • Bast F (2011) Monostroma: The jeweled seaweed for future: Cultivation methods, ecophysiology, phylogeography and molecular systematics. Lambert Academic Publishing, Moldova

  • Bernardi J, de Vasconcelos ERTPP, Lhullier C, Gerber T, Neto CP, Pellizzari FM (2016) Preliminary data of antioxidant activity of green seaweeds (Ulvophyceae) from the Southwestern Atlantic and Antarctic maritime islands. Hidrobiológica 26:233–239

    Article  Google Scholar 

  • Boopathy SN, Kathiresan K (2010) Anticancer drugs from marine flora: An overview. J Oncol 2010:214186

    Google Scholar 

  • Cancel LM, Tarbell JM (2013) Rhamnan sulfate enhances the endothelial glycocalyx and decreases the LDL permeability of human coronary artery endothelial cells in vitro. FASEB J 27:896.3–896.3

  • Cao S, He X, Qin L, He M, Yang Y, Liu Z, Mao W (2019) Anticoagulant and antithrombotic properties in vitro and in vivo of a novel sulfated polysaccharide from marine green alga Monostroma nitidum. Mar Drugs 17:247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassolato JEF, Noseda MD, Pujol CA, Pellizzari FM, Damonte EB, Duarte MER (2008) Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr Res 343:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Chakniramol S, Wierschem A, Cho M-G, Bashir KMI (2022) Physiological and clinical aspects of bioactive peptides from marine animals. Antioxidants 11:1021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang HC, Wu LC (2008) Texture and quality properties of Chinese fresh egg noodles formulated with green seaweed (Monostroma nitidum) powder. J Food Sci 73:S398–S404

    Article  PubMed  CAS  Google Scholar 

  • Charles AL, Chang CK, Wu ML, Huang TC (2007) Studies on the expression of liver detoxifying enzymes in rats fed seaweed (Monostroma nitidum). Food Chem Toxicol 45:2390–2396

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-J, Kuo C-Y, Kong Z-L, Lai C-Y, Chen G-W, Yang A-J, Lin L-H, Wang M-F (2021) Anti-fatigue effect of a dietary supplement from the fermented byproducts of Taiwan Tilapia aquatic waste and Monostroma nitidum oligosaccharide complex. Nutrients 13:1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhary B, Chauhan OP, Mishra A (2021) Edible seaweeds: A potential novel source of bioactive metabolites and nutraceuticals with human health benefits. Front Mar Sci 8:740054

    Article  Google Scholar 

  • Dale DC, Boxer L, Liles WC (2008) The phagocytes: Neutrophils and monocytes. Blood 112:935–945

    Article  PubMed  CAS  Google Scholar 

  • Dir I, Stark AH, Chayoth R, Madar Z, Arad SM (2009) Hypochlolesterolemic effects of nutraceuticals produced from the red microalga Porphyridium spp. in rats. Nutrients 1:156–167

    Article  Google Scholar 

  • EFSA European Food Safety Authority (2010) Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J 8:1462

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2021) Fishery and Aquaculture Statistics. Global production by production source 1950-2019. Accessed from https://www.fao.org/fishery/en/statistics on 27 July 2023.

  • Fuller S, Beck E, Salman H, Tapsell L (2016) New horizons for the study of dietary fiber and health: A review. Plant Foods Hum Nutr 71:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ganesan K, Kumar KS, Rao PS, Tsukui Y, Bhaskar N, Hosokawa M, Miyashita K (2014) Studies on chemical composition of three species of Enteromorpha. Biomed Prev Nutr 4:365–369

    Article  Google Scholar 

  • Garcia-Vaquero M, Hayes M (2016) Red and green macroalgae for fish, animal feed and human functional food development. Food Rev Int 32:15–45

    Article  CAS  Google Scholar 

  • Gomes L, Monteiro P, Cotas J, Gonçalves AMM, Fernandes C, Gonçalves T, Pereira L (2022) Seaweeds’ pigments and phenolic compounds with antimicrobial potential. Biomol Concepts 13:89–102

    Article  PubMed  CAS  Google Scholar 

  • Gordillo FJL, Aguilera J, Jimenez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Gubelit Y, Makhutova O, Sushchik N, Kolmakova A, Kalachova G, Gladyshev M (2015) Fatty acid and elemental composition of littoral “green tide” algae from the Gulf of Finland, the Baltic Sea. J Appl Phycol 27:375–386

    Article  CAS  Google Scholar 

  • Guiry MD, Guiry GM (2022) AlgaeBase (2022). World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; accessed 17 December 2023.

  • Guo J-T, Lee H-L, Chiang S-H, Lin F-I, Chang C-Y (2001) Antioxidant properties of the extracts from different parts of broccoli in Taiwan. J Food Drug Anal 9:96–101

    Google Scholar 

  • Hayase F, Kato H (1984) Antioxidative components of sweet potatoes. J Nutr Sci Vitaminol 30:37–46

    Article  PubMed  CAS  Google Scholar 

  • Heo S-J, Cha S-H, Lee K-W, Cho SK, Jeon Y-J (2005) Antioxidant activities of Chlorophyta and Phaeophyta from Jeju island. Algae 20:251–260

    Article  Google Scholar 

  • Hoang MH, Kim J-Y, Lee JH, You SG, Lee S-J (2015) Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Sci Biotechnol 24:199–205

    Article  CAS  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed, functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Hou X, Chai C, Qian Q, Yan X, Fan X (1997) Determination of chemical species of iodine in some seaweed. Sci Total Environ 204:215–221

    Article  Google Scholar 

  • Huang D-J, Chen H-J, Lin C-D, Lin Y-H (2005) Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Bot Bull Acad Sinica 46:99–106

    Google Scholar 

  • Hwang JH, Lim SB (2014) Antioxidant and anti-inflammatory activities of broccoli florets in LPS-stimulated RAW 264.7 cells. Prev Nutr Food Sci 19:89–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Im Y-G, Choi J-S, Kim D-S (2006) Mineral contents of edible seaweeds collected from Gijang and Wando in Korea. Korean J Fish Aquat Sci 39:16–22

    CAS  Google Scholar 

  • Jeon Y-E, Yin X-F, Lim S-S, Chung C-K, Kang I-J (2012) Antioxidant activities and acetylcholinesterase inhibitory activities from seaweed extracts. J Korean Soc Food Sci Nutr 41:443–449

    Article  Google Scholar 

  • Jiang Z, Ueno M, Nishiguchi T, Avu R, Isaka S, Okimura T, Yamaguchi K, Oda T (2013) Importance of sulfate groups for the macrophage-stimulating activities of ascophyllan isolated from the brown alga Ascophyllum nodosum. Carbohydr Res 380:124–129

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Zhang W, Mitra D, McCandless MG, Sharma P, Tandon R, Zhang F, Linhardt RJ (2020) The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 163:1649–1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamimura Y, Hashiguchi K, Nagata Y, Saka T, Yoshida M, Makino Y, Amano H (2010) Inhibitory effects of edible green algae Monostroma nitidum on glycemic responses. J Jap Soc Nutr Food Sci 57:441–445

    Article  CAS  Google Scholar 

  • Karnjanapratum S, You S (2011) Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. Int J Biol Macromol 48:311–318

    Article  PubMed  CAS  Google Scholar 

  • Kaur M, Kala S, Bast Parida A, F, (2023) Concise review of green algal genus Monostroma Thuret. J Appl Phycol 35:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kavale MG, Italiya B, Veeragurunathan V (2020) Scaling the production of Monostroma sp. by optimizing culture conditions. J Appl Phycol 32:451–457

    Article  CAS  Google Scholar 

  • Kazłowski B, Chiu YH, Kazłowski K, Pan C-L, Wu C-J (2012) Prevention of Japanese encephalitis virus infections by low-degree-polymerisation sulfated saccharides from Gracilaria sp. and Monostroma nitidum. Food Chem 133:866–874

    Article  Google Scholar 

  • Khiyami MA, Pometto AL, Brown RC (2005) Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J Ag Food Chem 53:2978–2987

    Article  CAS  Google Scholar 

  • Kim IH, Lee J-W (2008) Antimicrobial activities against methicillin-resistant Staphylococcus aureus from macroalgae. J Ind Eng Chem 14:568–572

    Article  CAS  Google Scholar 

  • Kitamura Y, Abe Y, Yasui T (1991) Metabolism of levoglucosan (1,6-anhydro-α-D-glucopyranose) in microorganisms. Ag Biol Chem 55:515–521

    CAS  Google Scholar 

  • Ko S-C, Lee S-H, Kang S-M, Ahn G, Cha S-H, Jeon Y-J (2011) Evaluation of α-glucosidase inhibitory activity of Jeju seaweeds using high throughput screening (HTS) technique. J Mar Biosci Biotechnol 5:33–39

    Google Scholar 

  • Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E (2014) Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev Nutr Food Sci 19:19–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar IN, Barot M, Kumar R (2014) Phytochemical analysis and antifungal activity of selected seaweeds from Okha coast, Gujarat, India. J Coast Life Med 2:535–540

    Google Scholar 

  • Kwon PS, Oh H, Kwon S-J, Jin W, Zhang F, Fraser K, Hong JJ, Linhardt RJ, Dordick JS (2020) Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov 6:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lahteenmaki-Uutela A, Rahikainen M, Camarena-Gomez MT, Piiparinen J, Spilling K, Yang B (2020) European Union legislation on macroalgae products. Aquac Int 29:487–509

    Article  Google Scholar 

  • Leandro A, Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AMM (2020) Seaweed’s bioactive candidate compounds to food industry and global food security. Life 10:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee B-B, Choi J-S, Moon HE, Ha Y-N, Kim MS, Cho KK, Choi IS (2013) Inhibition of growth and urease of Helicobacter pylori by Korean edible seaweed extracts. Bot Sci 91:515–522

    Article  Google Scholar 

  • Lee BH, Choi BW, Chun J-H, Yu B-S (1996) Extraction of water soluble antioxidants from seaweeds. J Ind Eng Chem 7:1069–1077

    CAS  Google Scholar 

  • Lee JB, Yamagaki T, Maeda M, Nakanishi H (1998) Rhamnan sulfate from cell walls of Monostroma latissimum. Phytochemistry 48:921–925

    Article  CAS  Google Scholar 

  • Lee JB, Hayashi K, Maeda M, Hayashi T (2004) Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med 70:813–817

    Article  PubMed  CAS  Google Scholar 

  • Lee JB, Koizumi S, Hayashi K, Hayashi T (2010) Structure of rhamnan sulfate from the green alga Monostroma nitidum and its anti-herpetic effect. Carbohydr Polym 81:572–577

    Article  CAS  Google Scholar 

  • Li H, Mao W, Zhang X, Qi X, Chen Y, Chen Y, Xu J, Zhao C, Hou Y, Yang Y, Li N, Wang C (2011) Structural characterization of an anticoagulant-active sulfated polysaccharide isolated from green alga Monostroma latissimum. Carbohydr Polym 85:394–400

    Article  CAS  Google Scholar 

  • Li H, Mao W, Hou Y, Gao Y, Qi X, Zhao C, Chen Y, Chen Y, Li N, Wang C (2012) Preparation, structure and anticoagulant activity of a low molecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostroma latissimum. Bioresour Technol 114:414–418

    Article  PubMed  CAS  Google Scholar 

  • Li N, Liu X, He X, Wang S, Cao S, Xia Z, Xian H, Qin L, Mao W (2017) Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydr Polym 159:195–206

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-P, Wu S-C, Huang S-L (2021) Effects of microwave-assisted extraction on the free radical scavenging and ferrous chelating abilities of Monostroma nitidum extract. J Mar Sci Technol 21:611–617

    Google Scholar 

  • Liu X, Hao J, He X, Wang S, Cao S, Qin L, Mao W (2017) A rhamnan-type sulfated polysaccharide with novel structure from Monostroma angicava Kjellm (Chlorophyta) and its bioactivity. Carbohydr Polym 173:732–748

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Cao S, Qin L, He M, Sun H, Yang Y, Liu X, Mao W (2018a) A sulfated heterorhamnan with novel structure isolated from the green alga Monostroma angicava. Carbohydr Res 466:1–10

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang S, Cao S, He X, Qin L, He M, Yang Y, Hao J, Mao W (2018b) Structural characteristics and anticoagulant property in vitro and in vivo of a seaweed sulfated rhamnan. Mar Drugs 16:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Du P, Liu X, Cao S, Qin L, He M, He X, Mao W (2018c) Anticoagulant properties of a green algal rhamnan-type sulfated polysaccharide and its low-molecular-weight fragments prepared by mild acid degradation. Mar Drugs 16:445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: Current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • Luyen HQ, Frampton DMF, Park NG, Hong YK (2006) Microalgal growth enhancement by levoglucosan isolated from the green seaweed Monostroma nitidum. J Appl Phycol 19:175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Maehre HK, Malde MK, Eilertsen KE, Elvevoll EO (2014) Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290

    Article  PubMed  CAS  Google Scholar 

  • Mao W, Li Y, Wu L, Wang H, Zhang Y, Zang X, Zhang H (2005) Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta). J Appl Phycol 17:349–354

    Article  CAS  Google Scholar 

  • Mao WJ, Fang F, Li HY, Qi XH, Sun HH, Chen Y, Guo SD (2008) Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym 74:834–839

    Article  CAS  Google Scholar 

  • Mao W, Li H, Li Y, Zhang H, Qi X, Sun H, Chen Y, Guo S (2009) Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). Int J Biol Macromol 44:70–74

    Article  PubMed  CAS  Google Scholar 

  • Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 164:740–751

    Article  PubMed  Google Scholar 

  • Masakazu T (1969) Culture studies on the life history of some species of the genus Monostroma. Rep Seaweed Res Inst Fac Sci Hokkaido Univ 6:1–56

    Google Scholar 

  • Matloub AA, El-Sherbini M, Borai IH, Ezz MK, Aly HF, Fouad GI (2013) Assessment of anti-hyperlipidemic effect and physco-chemical characterization of water soluble polysaccharides from Ulva fasciata Delile. J Appl Sci Res 9:2983–2993

    CAS  Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • Mohammed HO, O’Grady MN, O’Sullivan MG, Hamill RM, Kilcawley KN, Kerry JP (2021) An assessment of selected nutritional, bioactive, thermal and technological properties of brown and red Irish seaweed species. Foods 10:2784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses. The PRISMA statement. Plos Med 6:1000097

    Article  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz II, Díaz NF (2022) Minerals in edible seaweed: Health benefits and food safety issues. Crit Rev Food Sci Nutr 62:1592–1607

    Article  Google Scholar 

  • Nakahara K, Kitamura Y, Yamagishi Y, Shoun H, Yasui T (1994) Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552. Biosci Biotechnol Biochem 58:2193–2196

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Yamashiro Y, Konishi T, Hanasiro I, Tako M (2011) Structural characterization of rhamnan sulfate isolated from commercially cultured Monostroma nitidum (Hitoegusa). J Jap Soc Nutr Food Sci 58:245–251

    Article  CAS  Google Scholar 

  • Negara BFSP, Bashir KMI, Park Y, Shim KB, Kim J-S, Park SY, Lee J-S, Sohn J-H, Choi J-S (2023) Alaska pollock (Gadus chalcogrammus) proteins and hydrolysed polypeptides: A systematic review of their potential bioactivities. Int J Food Sci Technol 58:1695–1711

    Article  CAS  Google Scholar 

  • Nishikawa M, Mitsui M, Umeda K, Kitaoka Y, Takahashi Y, Tanaka S (2006) Effect of sulfated polysaccharides extracted from sea alga (Monostroma latissium and Monostroma nitidum) on serum cholesterol in subjects with borderline or mild hypercholesterolemia. J New Remed Clinics 55:1763–1770

    Google Scholar 

  • Okamoto T, Akita N, Terasawa M, Hayashi T, Suzuki K (2019) Rhamnan sulfate extracted from Monostroma nitidum attenuates blood coagulation and inflammation of vascular endothelial cells. J Nat Med 73:614–619

    Article  PubMed  CAS  Google Scholar 

  • Oza RM, Joshi HV, Parekh RG, Chauhan VD (1983) Preliminary observations on a Monostroma sp. From the Okha coast. Gujrat. Indian J Mar Sci 12:115–117

    Google Scholar 

  • Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: Updating the recent findings. 3 Biotech 2:171–185

    Google Scholar 

  • Patil NP, Gómez-Hernández A, Zhang F, Cancel L, Feng X, Yan L, Xia K, Takematsu E, Yang EY, Le V, Fisher ME, Gonzalez-Rodriguez A, Garcia-Monzon C, Tunnell J, Tarbell J, Linhardt RJ, Baker AB (2022) Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials 291:121865

    Article  PubMed  CAS  Google Scholar 

  • Pirian K, Jeliani ZZ, Sohrabipour J, Arman M, Faghihi MM, Yousefzadi M (2018) Nutritional and bioactivity evaluation of common seaweed species from the Persian Gulf. Iran J Sci Technol Trans A 42:1795–1804

    Article  Google Scholar 

  • Prosen EM, Radlein D, Piskorz J, Scott DS (1993) Microbialutilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng 42:538–541

    Article  PubMed  CAS  Google Scholar 

  • Risso S, Escudero C, de Portela M, Fajardo M (2003) Chemical composition and seasonal fluctuations of the edible green seaweed, Monostroma undulatum, Wittrock, from the Southern Argentina coast. Arch Latinoam Nutr 53:306–311

    PubMed  CAS  Google Scholar 

  • Ropellato J, Carvalho MM, Ferreira LG, Noseda MD, Zuconelli CR, Goncalves AG, Ducatti DR, Kenski JC, Nasato P, Winnischofer SM (2015) Sulfated heterorhamnans from the green seaweed Gayralia oxysperma: Partial depolymerization, chemical structure and antitumor activity. Carbohydr Polym 117:476–485

    Article  PubMed  CAS  Google Scholar 

  • Saco JA, Sekida S, Mine I (2018) Characterization of photosynthesis and growth of Monostroma latissimum (Ulvophyceae) collected from the intertidal area in Kochi, Japan. Kuroshio Sci 12:89–99

    Google Scholar 

  • Salehi B, Sharifi-rad J, Seca AML, Pinto DCGA (2019) Current trends on seaweeds, looking at chemical. Molecules 24:4182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid M, Kraft LGK, van der Loos LM, Kraft GT, Virtue P, Nichols PD, Hurd CL (2018) Southern Australian seaweeds, A promising resource for omega-3 fatty acids. Food Chem 265:70–77

    Article  PubMed  CAS  Google Scholar 

  • Seedevi P, Moovendhan M, Sudharsan S, Vasanthkumar S, Srinivasan A, Vairamani S, Shanmugam A (2015) Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum. Int J Biol Macromol 72:1459–1465

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Terasawa M, Okazaki F, Nakayama H, Zang L, Nishiura K, Matsuda K, Nishimura N (2021) Rhamnan sulphate from green algae Monostroma nitidum improves constipation with gut microbiome alteration in double-blind placebo-controlled trial. Sci Rep 11:13384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skrovankova S (2011) Seaweed vitamins as nutraceuticals. Adv Food Nutr Res 64:357–369

    Article  PubMed  CAS  Google Scholar 

  • Song Y, He P, Rodrigues AL, Datta P, Tandon R, Bates JT, Bierdeman MA, Chen C, Dordick J, Zhang F (2021) Anti-SARS-CoV-2 activity of rhamnan sulfate from Monostroma nitidum. Mar Drugs 19:685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78:539–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sufen Z, Ziyu H, Tingting D (2021) Analysis and evaluation of nutrient contents in Monostroma nitidum in Naozhou sea area, Zhanjiang. J Trop Biol 12:473–480

    Google Scholar 

  • Suzuki K, Terasawa M (2020) Biological activities of rhamnan sulfate extract from the green algae Monostroma nitidum (Hitoegusa). Mar Drugs 18:228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szekanecz Z, Koch AE (2007) Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 19:289–295

    Article  PubMed  Google Scholar 

  • Tako M, Yamashiro Y, Teruya T, Uechi S (2017) Structure–function relationship of rhamnan sulfate isolated from commercially cultured edible green seaweed, Monostroma nitidum. Am J Appl Chem 5:38–44

    Article  CAS  Google Scholar 

  • Terasawa M, Hayashi K, Lee JB, Nishiura K, Matsuda K, Hayashi T, Kawahara T (2020) Anti-influenza A virus activity of rhamnan sulfate from green algae Monostroma nitidum in mice with normal and compromised immunity. Mar Drugs 18:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terasawa M, Hiramoto K, Uchida R, Suzuki K (2022) Anti-inflammatory activity of orally administered Monostroma nitidum rhamnan sulfate against lipopolysaccharide-induced damage to mouse organs and vascular endothelium. Mar Drugs 20:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiviya P, Gamage A, Gama-Arachchige NS, Merah O, Madhujith T (2022) Seaweeds as a source of functional proteins. Phycology 2:216–243

    Article  Google Scholar 

  • Torres MD, Flórez-Fernández N, Domínguez H (2019) Integral utilization of red seaweed for bioactive production. Mar Drugs 17:314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsubaki S, Oono K, Hiraoka M, Onda A, Mitani T (2016) Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem 210:311–316

    Article  PubMed  CAS  Google Scholar 

  • Vaghela P, Das AK, Trivedi K, Anand KGV, Shinde P, Ghosh A (2022) Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract. Algal Res 66:102774

    Article  Google Scholar 

  • Vaghela P, Trivedi K, Anand KGV, Nayak J, Vyas D, Ghosh A (2023) Aqueous homogenate of fresh Ulva lactuca for ameliorating nutrient deficiency – A nutraceutical alternative to using whole seaweeds. Algal Res 74:103211

    Article  Google Scholar 

  • Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222

    Article  CAS  Google Scholar 

  • Wang L, Wang X, Wu H, Liu R (2014) Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs 12:4984–5020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Wang W, Hao C, Yunjia Y, Qin L, He M, Mao W (2018) Antiviral activity against enterovirus 71 of sulfated rhamnan isolated from the green alga Monostroma latissimum. Carbohydr Polym 200:43–53

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang W, Hao C, Yunjia Y, Qin L, He M, Mao W (2020) A sulfated glucuronorhamnan from the green seaweed Monostroma nitidum: Characteristics of its structure and antiviral activity. Carbohydr Polym 227:115280

    Article  PubMed  CAS  Google Scholar 

  • Wang WL, Chiang YM (1994) Potential economic seaweeds of Hengchun Peninsula. Taiwan. Econ Bot 48:182–189

    Article  CAS  Google Scholar 

  • WHO (2020) Chromium in drinking-water. Background document for development of WHO Guidelines for drinking-water quality (WHO/HEP/ECH/WSH/2020.3). World Health Organization, Geneva, Switzerland. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://apps.who.int/iris/bitstream/handle/10665/338062/WHO-HEP-ECH-WSH-2020.3-eng.pdf?sequence=1&isAllowed=y (accessed on 07 September 2023).

  • Wu SC, Pan CL (2004) Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fish Sci 70:1164–1173

    Article  CAS  Google Scholar 

  • Wu G-J, Shiu S-M, Hsieh MC, Tsai GJ (2016) Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocoll 53:16–23

    Article  CAS  Google Scholar 

  • Xu S, Yu C, Wang Q, Liao J, Liu C, Huang L, Liu Q, Wen Z, Feng Y (2023) Chromium contamination and health risk assessment of soil and agricultural products in a rural area in southern China. Toxics 11:27

    Article  CAS  Google Scholar 

  • Yamashiro Y, Nakamura M, Yogi T, Teruya T, Konishi T, Uechi S, Tako M (2017) Anticoagulant activity of rhamnan sulfate isolated from commercially cultured Monostroma nitidum. Int J Biomed Mater Res 5:37–43

    Article  Google Scholar 

  • Yu K, Ke MY, Li WH, Zhang SQ, Fang XC (2014) The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia Pac J Clin Nutr 23:210–218

    PubMed  CAS  Google Scholar 

  • Zang L, Shimada Y, Tanaka T, Nishimura N (2015) Rhamnan sulphate from Monostroma nitidum attenuates hepatic steatosis by suppressing lipogenesis in a diet-induced obesity zebrafish model. J Funct Foods 17:364–370

    Article  CAS  Google Scholar 

  • Zha XO, Xiao JJ, Zhang HN, Wang JH, Pan LH, Yang XF, Luo JP (2012) Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atheroclerosis. Food Chem 134:244–252

    Article  CAS  Google Scholar 

  • Zhang HJ, Mao WJ, Fang F, Li HY, Sun HH, Chen Y, Qi XH (2008) Chemical characteristics and anti-coagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydr Polym 71:428–434

    Article  CAS  Google Scholar 

  • Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol 214:161–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu T, Heo HJ, Row KH (2010) Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology. Carbohydr Polym 82:106–110

    Article  CAS  Google Scholar 

  • Zhuang XL, Zhang HX, Tang JJ (2001) Levoglucosan kinase involved in citric acid fermentation by Aspergillus niger CBX-209 using levoglucosan as sole carbon and energy source. Biomass Bioenergy 21:53–60

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (PJT200885).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.M., K.M.I.B. and J.-S.C.; Methodology: S.M. and K.M.I.B.; Formal analysis and investigation: S.M. and K.M.I.B.; Writing – original draft preparation: S.M., K.M.I.B. and J.-S.C.; Writing – review and editing: K.M.I.B., M.M., M.D.N.M., M.N.A.K., J.-H.S. and J.-S.C; Funding acquisition: J.-S.C.; Resources: J.-S.C.; Supervision: J.-S.C. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jae-Hak Sohn or Jae-Suk Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, S., Bashir, K.M.I., Mohibbullah, M. et al. Nutritional and health promoting perspectives of Monostroma spp. (Chlorophyta): A systematic review. J Appl Phycol (2024). https://doi.org/10.1007/s10811-023-03176-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-023-03176-9

Keywords

Navigation