Skip to main content
Log in

Overview of the management of heavy metals toxicity by microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae are among the oldest life forms on Earth and over centuries of evolution they have developed adaptive mechanisms that allow them to survive harsh environmental conditions, including exposure to toxic xenobiotics such as heavy metals (HMs). The response of microalgae to HM stress is like that occurring under any other stress conditions; it generally leads to the formation of reactive oxygen species (ROS). An increased ROS level in algal cells causes alterations of various biological functions, primarily lipid peroxidation, protein oxidation, and nucleic acid damage. To cope with these perturbations, microalgae cells employ several self-defense mechanisms based on the action of ROS-scavenging enzymes and non-enzymatic antioxidant systems. The contribution of phytohormones to the management of oxidative stress is also one of the most important mechanisms. Although several studies suggest that microalgae are potential organisms for the phycoremediation of HMs, the mechanisms by which they cope with oxidative stress remain unclear. This review aims to (i) highlight the oxidative stress of HMs on the cells of microalgae, (ii) describe the enzymatic and biochemical mechanisms by which microalgae manage the oxidative stress, and finally (iii) point out the roles of phytohormones in the regulation of oxidative stress caused by HMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

modified from Pikula et al. (2019) and Hajiboland (2014)

Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abboud P, Wilkinson KJ (2013) Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environ Pollut 179:33–38

    Article  CAS  PubMed  Google Scholar 

  • Ahii M, Teresa A, Grac M, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95

    Article  Google Scholar 

  • Ajitha V, Sreevidya CP, Sarasan M, Park JC, Mohandas A, Sarojini I, Singh B, Puthumana J, Lee J (2021) Effects of zinc and mercury on ROS-mediated oxidative stress-induced physiological impairments and antioxidant responses in the microalga Chlorella vulgaris. Environ Sci Pollut Res Int doi: 10.1007/s11356-021-12950-6

  • Al-Rashed SA, Ibrahim MM, El-Gaaly GA, Al-Shehri S, Mostafa A (2016) Evaluation of radical scavenging system in two microalgae in response to interactive stresses of UV-B radiation and nitrogen starvation. Saudi J Biol Sci 23:706–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:6730305

    Article  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell 2014: 360438

  • Baba SP, Bhatnagar A (2018) Role of thiols in oxidative stress. Curr Opin Toxicol 7:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajguz A (2019) Brassinosteroids in microalgae: application for growth improvement and protection against abiotic stresses. In: Hayat S, Yusuf M, Bhardwaj R, Bagjuz A (eds) Brassinosteroids: Plant Growth and Development. Springer Nature, Singapore pp 45–58.

  • Bajguz A (2011) Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch Env Contam Toxicol 60:406–416

    Article  CAS  Google Scholar 

  • Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179

    Article  CAS  Google Scholar 

  • Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 324:321–324

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 4:205–215

    Article  CAS  Google Scholar 

  • Çelekli A, Kapi M, Bozkurt H (2013) Effect of cadmium on biomass, pigmentation, malondialdehyde, and proline of Scenedesmus quadricauda var. longispina. Bull Environ Contam Toxicol 91:571–576

    Article  PubMed  Google Scholar 

  • Cheng J, Qiu H, Chang Z, Jiang Z, Yin W (2016) The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. Springerplus 5:1–8

    Article  Google Scholar 

  • Chisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17

    Article  Google Scholar 

  • Cirulis JT, Scott JA, Ross GM (2013) Management of oxidative stress by microalgae. Can J Physiol Pharmacol 91:15–21

    Article  CAS  PubMed  Google Scholar 

  • Dahmen-Ben Moussa I, Athmouni K, Chtourou H, Ayadi H, Sayadi S, Dhouib A (2018) Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution. J Appl Phycol 30:931–941

    Article  CAS  Google Scholar 

  • Danouche M, El Ghachtouli N, El Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7:e07609

    Article  PubMed  PubMed Central  Google Scholar 

  • Danouche M, El Ghachtouli N, El Baouchi A, El Arroussi H (2020) Heavy metals phycoremediation using tolerant green microalgae: enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. J Environ Chem Eng 8:104460

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  CAS  Google Scholar 

  • Elleuch J, Ben Amor F, Chaaben Z, Frikha F, Michaud P, Fendri I, Abdelkafi S (2021) Zinc biosorption by Dunaliella sp. AL-1: mechanism and effects on cell metabolism. Sci Total Environ 773:145024

  • Erland LAE, Turi CE, Saxena PK (2019) Serotonin in plants: origin, functions, and implications. In: Pilowsky PM (ed) Serotonin. The mediator that spans evolution. Elsevier, London pp 23–46.

  • Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Polish J Environ Stud 20:53–59

    Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2010) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30:1–12

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  CAS  PubMed  Google Scholar 

  • Gauthier MR, Senhorinho GNA, Scott JA (2020) Microalgae under environmental stress as a source of antioxidants. Algal Res 52:102–104

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Jacinto V, García-Barrera T, Gómez-Ariza JL, Garbayo-Nores I, Vílchez-Lobato C (2015) Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg-Phytochelatins. Chem Biol Interact 238:82–90

    Article  PubMed  Google Scholar 

  • Hajiboland R (2014) Reactive oxygen species and photosynthesis. In: Ahmad P (ed) Oxidative Damage to Plants. Elsevier, Amsterdam pp 1–63

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamed SM, Selim S, Klöck G, AbdElgawad H (2017a) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19–25

    Article  CAS  PubMed  Google Scholar 

  • Hamed SM, Zinta G, Klöck G, Asard H, Selim S, AbdElgawad H (2017b) Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicol Environ Saf 140:256–263

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer, Dordrecht pp 53–64

  • Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

    Article  CAS  PubMed Central  Google Scholar 

  • Hashtroudi MS, Ghassempour A, Riahi H, Shariatmadari Z, Khanjir M (2013) Endogenous auxins in plant growth-promoting cyanobacteria—Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk MH, Miyamoto K (2001) Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. J Biosci Bioeng 92:24–29

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Ullah F, Zhou D, Yi M, Zhao Y, Terzaghi WB (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Janknegt PJ, De Graaff CM, Van de Poll WH, Visser RJ, Rijstenbil JW, Buma AG (2009) Short-term antioxidative responses of 15 microalgae exposed to excessive irradiance including ultraviolet radiation. Eur J Phycol 44:37–41

    Article  Google Scholar 

  • Jeong Y, Nakamura J, Upton PB, Swenberg JA (2005) Pyrimido [1,2-α]-purin-10(3H)-one, M1G, is less prone to artifact than base oxidation. Nucleic Acids Res 33:6426–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Purchase D, Jones H, Garelick H (2011) Effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris. Int J Phytoremediation 13:834–844

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE (1989) Tocopherol stabilizes membrane against phospholipase A, free fatty acids, and lysophospholipids. Ann N Y Acad Sci 570:121–135

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi I, Fujiwara S, Saegusa H, Inouhe M, Matsumoto H, Tsuzuki M (2006) Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii. Mar Biotechnol 8:94–101

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Bačkor M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178:307–311

    Article  Google Scholar 

  • Kováčika J, Klejdusb B, Babulad P, Hedbavny J (2017) Ascorbic acid affects short-term response of Scenedesmus quadricauda to cadmium excess. Algal Res 24:354–359

    Article  Google Scholar 

  • León-Vaz A, León R, Giráldez I, Vega JM, Vigara J (2021) Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation. Aquat Toxicol 239:105941

    Article  PubMed  Google Scholar 

  • Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zheng C, Fu H, Zhai S, Hu F, Naveed S, Zhang C, Ge Y (2021) Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. Chemosphere 274:129771

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mei LI, Qin ZHU, Hu CW, Li CHEN, Liu ZL, Kong ZM (2007) Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J Environ Sci 19:1330–1335

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Ma Y, Xing G, Li W, Kong X, Li J, Wang L, Yuan H, Yang J (2019) Revelation of microalgae’s lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environ Pollut 250:186–195

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Wu Y, Ding H, Zhang W (2015) The combined and second exposure effect of copper(II) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa. Environ Toxicol Pharmacol 40:140–148

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Gao F, Li C, Yang H (2021) Response of microalgae Chlorella vulgaris to Cr stress and continuous Cr removal in a membrane photobioreactor. Chemosphere 262:128422

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    Article  CAS  PubMed  Google Scholar 

  • Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant Cell Environ 29:2043–2054

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Chen Y, Liu F, Zhang S, Wei Q (2021) Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. Algal Res 55:1–10

    Article  Google Scholar 

  • Maillard P, Thepenier C, Gudin C (1993) Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis. Relationship between growth and ethylene production. J Appl Phycol 5:93–98

    Article  CAS  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem F Van, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models 61:4197-4220.

  • Mohy El-Din SM, Abdel-Kareem MS (2020) Effects of copper and cadmium on the protein profile and DNA pattern of marine microalgae Chlorella salina and Nannochloropsis salina. Environ Process 7:189–205

    Article  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–483

    Article  PubMed  Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • Movafeghi A, Khataee A, Rezaee A, Kosari-Nasab M, Tarrahi R (2019) Toxicity of cadmium selenide nanoparticles on the green microalga Chlorella vulgaris: inducing antioxidative defense response. Environ Sci Pollut Res 26:36380–36387

    Article  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HN, Kisiala AB, Emery RJN (2020a) The roles of phytohormones in metal stress regulation in microalgae. J Appl Phycol 32:3817–3829

    Article  CAS  Google Scholar 

  • Nguyen TQ, Sesin V, Kisiala A, Emery RJN (2020b) The role of phytohormones in enhancing metal remediation capacity of algae. Bull Environ Contam Toxicol 105:671–678

    Article  CAS  PubMed  Google Scholar 

  • Okamoto OK, Pinto E, Latorre LR, Bechara EJH, Colepicolo P (2001) Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch Environ Contam Toxicol 40:18–24

    Article  CAS  PubMed  Google Scholar 

  • Park AK, Kim I-S, Do H, Jeon BW, Lee CW, Roh SJ, Shin SC, Park H, Kim Y-S, Kim Y-H, Yoon H-S, Lee JH, Kim H-W (2016) Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica. Sci Rep 6:33903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlik-Skowrońska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127

    Article  PubMed  Google Scholar 

  • Pérez-Gálvez A, Viera I, Roca M (2020) Carotenoids and chlorophylls as antioxidants. Antioxidants 9:505

    Article  PubMed Central  Google Scholar 

  • Pikula KS, Zakharenko AM, Aruoja V, Golokhvast KS, Tsatsakis AM (2019) Oxidative stress and its biomarkers in microalgal ecotoxicology. Curr Opin Toxicol 13:8–15

    Article  Google Scholar 

  • Pinto E, Sigaud-Kutner TC, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2017) Response and the detoxification strategies of green alga Acutodesmus obliquus (Chlorophyceae) under lead stress. Environ Exp Bot 144:25–36

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Zambrzycka-Szelewa E, Sienkiewicz A (2020) Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci Rep 10:10193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Talarek M, Bralska M, Zambrzycka E (2015) The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ Sci Pollut Res 22:19112–19123

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E, Bralska M (2018) Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiol Biochem 132:535–546

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Chen W, Sheng GD, Xu X, Liu W, Fu Z (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rai UN, Singh NK, Upadhyay AK, Verma S (2013) Chromate tolerance and accumulation in Chlorella vulgaris L: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour Technol 136:604–609

    Article  CAS  PubMed  Google Scholar 

  • Rajput VD, Harish SRK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology (basel) 10:267

  • Randhawa VK, Zhou F, Jin X, Nalewajko C, Kushner DJ (2001) Role of oxidative stress and thiol antioxidant enzymes in nickel toxicity and resistance in strains of the green alga Scenedesmus acutus f. alternans. Can J Microbiol 47:987–993

    Article  CAS  PubMed  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Balzaretti V, de Molina MdCR (2012) Chromium induced stress conditions in heterotrophic and auxotrophic strains of Euglena gracilis. Ecotoxicol Environ Saf 84:147–154

    Article  CAS  PubMed  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, De Molina MdCR (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo R, Libuy M (2014) Modulation of plant endogenous antioxidant systems by polyphenols. In: Watson RR (ed) Polyphenols in plants: isolation, purification and extract preparation. Elsevier, Amsterdam pp 65–85

  • Sabatini SE, Juárez ÁB, Eppis MR, Bianchi L, Luquet CM, Ríos de Molina MDC (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Thomas R, Moreno-Sánchez R, García-García JD (2016) Accumulation of zinc protects against cadmium stress in photosynthetic Euglena gracilis. Environ Exp Bot 131:19–31

    Article  Google Scholar 

  • Shivaji S, Dronamaraju SVL (2019) Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of cadmium and zinc. Sci Rep 9:8485

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Strejckova A, Dvorak M, Klejdus B, Krystofova O, Hedbavny J, Adam V, Huska D (2019) The strong reaction of simple phenolic acids during oxidative stress caused by nickel, cadmium and copper in the microalga Scenedesmus quadricauda. N Biotechnol 48:66–75

    Article  CAS  PubMed  Google Scholar 

  • Suárez C, Torres E, Pérez-Rama M, Herrero C, Abalde J (2010) Cadmium toxicity on the freshwater microalga Chlamydomonas moewusii Gerloff: biosynthesis of thiol compounds. Environ Toxicol Chem 29:2009–2015

    PubMed  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    Article  CAS  PubMed  Google Scholar 

  • Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A (2020) Hormonal response of Acutodesmus obliquus exposed to combined treatment with 24-epibrassinolide and lead. J Appl Phycol 32:2903–2914

    Article  CAS  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. Mol Clin Environ Toxicol 101:133–164

    Article  Google Scholar 

  • Thomas CE, McLean LR, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RP, Singh B, Bisht SS, Pandey J (2009) L-ascorbic acid in organic synthesis: an overview. Curr Org Chem 13:99–122

    Article  CAS  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  CAS  PubMed  Google Scholar 

  • Ugya AY, Imam TS, Li A, Ma J, Hua X (2020) Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chem Ecol 36:174–193

    Article  CAS  Google Scholar 

  • Ulrich K, Jakob U (2019) The role of thiols in antioxidant systems. Free Radic Biol Med 140:14–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vara D, Pula G (2014) Reactive oxygen species: physiological roles in the regulation of vascular cells. Curr Mol Med 14:1103–1125

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya TA (2009) Viable cyanobacteria and green algae from the permafrost darkness. In: Margesin R (ed) Permafrost soils. Springer, Berlin pp 73–84

  • Volland S, Lütz C, Michalke B, Lütz-Meindl U (2012) Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol 109:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Yang H, Johnson D, Gensler C, Decker E, Zhang G (2017) Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostagland Other Lipid Mediat 132:84–91

    Article  CAS  Google Scholar 

  • Zbigniew T, Wojciech P (2006) Individual and combined effect of anthracene, cadmium, and chloridazone on growth and activity of SOD izoformes in three Scenedesmus species. Ecotoxicol Environ Saf 65:323–331

    Article  CAS  PubMed  Google Scholar 

  • Zhang LP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Cheng JJ (2017) Effects of selenite on unicellular green microalga Chlorella pyrenoidosa: bioaccumulation of selenium, enhancement of photosynthetic pigments, and amino acid production. J Agric Food Chem 65:10875–10883

    Article  CAS  PubMed  Google Scholar 

  • Zhu QL, Guo SN, Wen F, Zhang XL, Wang CC, Si LF, Zheng JL, Liu J (2019) Transcriptional and physiological responses of Dunaliella salina to cadmium reveals time-dependent turnover of ribosome, photosystem, and ROS-scavenging pathways. Aquat Toxicol 207:153–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) for their financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Danouche.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danouche, M., El Ghatchouli, N. & Arroussi, H. Overview of the management of heavy metals toxicity by microalgae. J Appl Phycol 34, 475–488 (2022). https://doi.org/10.1007/s10811-021-02668-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02668-w

Keywords

Navigation