Skip to main content
Log in

Evaluation of electrocoagulation, flocculation, and sedimentation harvesting methods on microalgae consortium grown in anaerobically digested abattoir effluent

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae dewatering is a major bottleneck for biomass production in a large-scale microalgal production system which accounts for 20–60% of production cost. In this study, three dewatering systems of electrocoagulation, flocculation, and pH-induced flocculation were evaluated for microalgal consortium grown in anaerobically digested abattoir effluent at pH 6.5 and 9.5. At the shortest time (15 min) and the highest current density (0.08 A cm−2), the highest microalgae recoveries of 78 and 84% were obtained with the corresponding power consumptions of 1.25 and 1.07 kWh kg−1 for cultures at pH 6.5 and 9.5. For microalgae suspension at pH 6.5, the highest biomass recovery of 77% was obtained when 100 mg L−1 of FeCl3·6H2O (after 15 min) or 100 mg L−1 of Al2(SO4)3·18H2O (after 30 min) was added. However, microalgal recoveries significantly increased when FeCl3·6H2O or Al2(SO4)3·18H2O was used with the culture at pH 9.5. pH-Induced experiments showed that cultures adjusted at pH 10.5 had 36% higher biomass recovery compared to that in cultures at pH 8.5 after 2 h. The results of this study showed that cultures at higher pH (9.5) had a better microalgae recovery in all dewatering systems than cultures at lower pH (6.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arias DM, Solé-Bundó M, Garfí M, Ferrer I, García J, Uggetti E (2018) Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour Technol 247:513–519

    Article  CAS  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Buchanan NA, Young P, Cromar NJ, Fallowfield HJ (2018) Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. Algal Res 35:325–332

    Article  Google Scholar 

  • Chatsungnoen T, Chisti Y (2016) Harvesting microalgae by flocculation–sedimentation. Algal Res 13:271–283

    Article  Google Scholar 

  • Chen L, Wang C, Wang W, Wei J (2013) Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresour Technol 133:9–15

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM (2009) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol 84:1078–1083

    Article  CAS  Google Scholar 

  • Gani P, Mohamed Sunar N, Matias-Peralta H, Abdul Latiff AA (2017) Effect of pH and alum dosage on the efficiency of microalgae harvesting via flocculation technique. International J Green Energy 14:395–399

    Article  CAS  Google Scholar 

  • Gao S, Yang J, Tian J, Ma F, Tu G, Du M (2010) Electro-coagulation–flotation process for algae removal. J Hazard Mat 177:336–343

    Article  CAS  Google Scholar 

  • Ghernaout D, Ghernaout B, Boucherit A (2008) Effect of pH on electrocoagulation of bentonite suspensions in batch using iron electrodes. J Dispers Sci Technol 29:1272–1275

    Article  CAS  Google Scholar 

  • Granados M, Acién F, Gomez C, Fernández-Sevilla J, Grima EM (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    Article  CAS  Google Scholar 

  • Hapońska M, Clavero E, Salvadó J, Farriol X, Torras C (2018) Pilot scale dewatering of Chlorella sorokiniana and Dunaliella tertiolecta by sedimentation followed by dynamic filtration. Algal Res 33:118–124

    Article  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  Google Scholar 

  • Lal A, Ghosh S, Das D (2018) Improvement in electrically induced biomass harvesting of Chlorella sp. MJ 11/11 for bulk biomass production. J Appl Phycol 30:979–993

    Article  CAS  Google Scholar 

  • Landels A, Beacham TA, Evans CT, Carnovale G, Raikova S, Cole IS, Goddard P, Chuck C, Allen MJ (2019) Improving electrocoagulation floatation for harvesting microalgae. Algal Res 39:101446

    Article  Google Scholar 

  • Leite LS, Daniel LA, Pivokonsky M, Novotna K, Branyikova I, Branyik T (2019a) Interference of model wastewater components with flocculation of Chlorella sorokiniana induced by calcium phosphate precipitates. Bioresour Technol 286:121352

    Article  CAS  Google Scholar 

  • Leite LS, Hoffmann MT, Daniel LA (2019b) Coagulation and dissolved air flotation as a harvesting method for microalgae cultivated in wastewater. J Water Proc Eng 32:100947

    Article  Google Scholar 

  • Maroneze MM, Barin JS, de Menezes CR, Queiroz MI, Zepka LQ, Jacob-Lopes E (2014) Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Sci Agric 71:521–524

    Article  Google Scholar 

  • Mennaa FZ, Arbib Z, Perales JA (2019) Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation–flocculation. Environ Technol 40:342–355

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284

    Chapter  Google Scholar 

  • Moheimani NR, Vadiveloo A, Ayre JM, Pluske JR (2018) Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent. Algal Res 35:362–369

    Article  Google Scholar 

  • Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mat 114:199–210

    Article  CAS  Google Scholar 

  • Mouedhen G, Feki M, Wery MDP, Ayedi HF (2008) Behavior of aluminum electrodes in electrocoagulation process. J Hazard Mats 150:124–135

    Article  CAS  Google Scholar 

  • Pahl SL, Lee AK, Kalaitzidis T, Ashman PJ, Sathe S, Lewis DM (2013) Harvesting, thickening and dewatering microalgae biomass. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 165–185

    Chapter  Google Scholar 

  • Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conservat Recycl 19:1–10

    Article  Google Scholar 

  • Potočár T, Pereira JAV, Brányiková I, Barešová M, Pivokonský M, Brányik T (2020) Alkaline flocculation of Microcystis aeruginosa induced by calcium and magnesium precipitates. J Appl Phycol 32:329–337

    Article  Google Scholar 

  • Raeisossadati M, Vadiveloo A, Bahri PA, Parlevliet D, Moheimani NR (2019) Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. J Appl Phycol 31:2311–2319

    Article  CAS  Google Scholar 

  • Shuman TR, Mason G, Marsolek MD, Lin Y, Reeve D, Schacht A (2014) An ultra-low energy method for rapidly pre-concentrating microalgae. Bioresour Technol 158:217–224

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energy 2:012701

    Article  Google Scholar 

  • Uduman N, Bourniquel V, Danquah MK, Hoadley AF (2011) A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J 174:249–257

    Article  CAS  Google Scholar 

  • Vadiveloo A, Matos AP, Chaudry S, Bahri PA, Moheimani NR (2020) Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae). J CO2 Utiliz 38:273–281

    Article  CAS  Google Scholar 

  • Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329

    Article  CAS  Google Scholar 

  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119

    Article  CAS  Google Scholar 

  • Vandamme D, Muylaert K, Fraeye I, Foubert I (2014) Floc characteristics of Chlorella vulgaris: influence of flocculation mode and presence of organic matter. Bioresour Technol 151:383–387

    Article  CAS  Google Scholar 

  • Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    Article  CAS  Google Scholar 

  • Yang F, Xiang W, Fan J, Wu H, Li T, Long L (2016) High pH-induced flocculation of marine Chlorella sp. for biofuel production. J Appl Phycol 28:747–756

    Article  CAS  Google Scholar 

  • Zarezadeh S, Moheimani NR, Jenkins SN, Hülsen T, Riahi H, Mickan BS (2019) Microalgae and phototrophic purple bacteria for nutrient recovery from agri-industrial effluents: influences on plant growth, rhizosphere bacteria, and putative carbon- and nitrogen-cycling genes. Front Plant Sci 10:1–13

Download references

Funding

This Wastes to Profits project was supported by Meat and Livestock Australia through funding from the Australian Government Department of Agriculture, Water and the Environment as part of its Rural R&D for Profit program and the partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R. Moheimani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeisossadati, M., Moheimani, N.R. & Bahri, P.A. Evaluation of electrocoagulation, flocculation, and sedimentation harvesting methods on microalgae consortium grown in anaerobically digested abattoir effluent. J Appl Phycol 33, 1631–1642 (2021). https://doi.org/10.1007/s10811-021-02403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02403-5

Keywords

Navigation