Skip to main content
Log in

Effects of static magnetic field on Chlorella vulgaris: growth and extracellular polysaccharide (EPS) production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this study, Chlorella vulgaris treated with static magnetic field (SMF) was investigated in terms of the algal density, biomass, extracellular polysaccharide content and distribution, percentage of algal aggregation, total protein content, enzyme activity, malondialdehyde content, and nutrient removal. The algal density and biomass under 800 G SMF were highest on the 16th day and were 29.02% and 35.67% greater than the control group (0 G group), respectively. Soluble EPS decreased with an increase in magnetic field strength, while bound EPS exhibited an opposite trend. Algal aggregation occurred in all treatment groups, with the aggregation percentage in the high magnetic field-treated groups being lower than that in the control group. Total protein content of the 800 G group was the lowest at 1.13 μg (106 cells)-1 and the enzyme activity of treated algae was higher than that of the control group. SMF affected the growth and reproduction of C. vulgaris by affecting the antioxidant response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adav S, Lin J, Yang Z, Whiteley C, Lee D, Peng X, Zhang Z (2010) Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol Adv 28:255–280

    CAS  PubMed  Google Scholar 

  • Chen M, Lee D, Tay J, Show K (2007) Staining extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75:467–474

    CAS  PubMed  Google Scholar 

  • Chiou Y, Hsieh M, Yeh H (2010) Effect of algal extracellular polymer substances on UF membrane fouling. Desalination 250:648–652

    CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Esparza-Soto M, Westerhoff P (2003) Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res 37:2301–2310

    CAS  PubMed  Google Scholar 

  • Ghasemi R, Ghaderian SM, Kramer U (2009) Accumulation of nickel in trichomes of a nickel hyperaccumulator plant, alyssum inflatum. Northeast Nat 16:81–92

    Google Scholar 

  • Granum E, Kirkvold S, Myklestad SM (2002) Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar Ecol Prog Ser 242:83–94

    CAS  Google Scholar 

  • Guerrini F, Cangini M, Boni L, Trost P, Pistocchi R (2000) Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J Phycol 36:882–890

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1992) Comments on review of free-radicals in biology and medicine. Free Radic Biol Med 12:93–95

    PubMed  Google Scholar 

  • Han S, Jin W, Chen Y, Tu R, Abomohra AE (2016) Enhancement of lipid production of Chlorella pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Appl Biochem Biotechnol 180:1043–1055

    CAS  PubMed  Google Scholar 

  • Hinson RK, Kocher WM (1996) Model for effective diffusivities in aerobic biofilms. J Environ Eng 122:1023–1030

    CAS  Google Scholar 

  • Hirano M, Ohta A, Abe K (1998) Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis. J Ferment Bioeng 86:313–316

    CAS  Google Scholar 

  • Hsieh K, Murgel G, Lion L, Shuler M (1994) Interactions of microbial biofilms with toxic trace metals: 1. Observation and modeling of cell growth, attachment, and production of extracellular polymer. Biotechnol Bioeng 44:219–231

    CAS  PubMed  Google Scholar 

  • Ibelings B, Mur L, Walsby A (1991) Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J Plankton Res 13:419–436

    Google Scholar 

  • Katz E, Lioubashevski O, Willner I (2005) Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J Am Chem Soc 127:3979–3988

    CAS  PubMed  Google Scholar 

  • Kaur G, Alam S, Jabbar Z, Javed K, Athar M (2006) Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol 108:340–348

    PubMed  Google Scholar 

  • Kessel M, Eloff J (1975) The ultrastructure and development of the colonial sheath of Microcystis marginata. Arch Microbiol 106:209–214

    CAS  PubMed  Google Scholar 

  • Lancelot C, Mathot S, Owens NJP (1986) Modeling protein synthesis, a step to an accurate estimate of net primary production: Phaeocystis pouchetii colonies in Belgian coastal waters. Mar Ecol Prog Ser 32:193–202

    CAS  Google Scholar 

  • Lee S, Kim S, Kim M, Lim K, Jung Y (2014) The effect of hydraulic characteristics on algal bloom in an artificial seawater canal: a case study in Songdo City, South Korea. Water 6:399–413

    Google Scholar 

  • Li YG, Gao KS (2004) Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides. Eur J Phycol 39:9–15

    Google Scholar 

  • Li ZY, Guo SY, Li L, Cai MY (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresour Technol 98:700–705

    CAS  PubMed  Google Scholar 

  • Li M, Zhu W, Gao L, Lu L (2013) Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25:1023–1030

    CAS  Google Scholar 

  • Liang W, Qu J, Chen L (2004) Algal inactivation and removal by pulsed magnetic field with varying frequency. Environ Sci 25:38–42

    Google Scholar 

  • Liu W (2006) Research on the effect of magnetic field on the growth of algae. Water Purif Technol 25:19–21

    Google Scholar 

  • Mallmann W, Buswell A, Gilcreas F, McCrady M, Nichols M, Olson T, Parr L, Tripp J (1945) Report of the standard methods committee on examination of water and sewage. Am J Public Health Nations Health 35:957–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Matsumoto T, Yamamura H, Hayakawa J, Watanabe Y, Harayama S (2014) Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process. Water Sci Technol 69:1919–1925

    CAS  PubMed  Google Scholar 

  • Newman J, Watson R (1999) Preliminary observations on the control of algal growth by magnetic treatment of water. Hydrobiologia 415:319–322

    Google Scholar 

  • Nielsen P, Jahn A, Palmgren R (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Sci Technol 36:11–19

    CAS  Google Scholar 

  • Plude J, Parker D, Schommer O, Timmerman R, Hagstrom S, Joers J, Hnasko R (1991) Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40. Appl Environ Microbiol 57:1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ (1998) Melatonin in the context of the reported bioeffects of environmental electromagnetic fields. Bioelectrochem Bioenerg 47:135–142

    CAS  Google Scholar 

  • Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45

    Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N Z J Mar Freshw Res 21:379–390

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rugnini L, Costa G, Congestri R, Antonaroli S, Sanita di Toppi L, Bruno L (2018) Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: an integrated approach. Plant Physiol Biochem 125:45–51

    CAS  PubMed  Google Scholar 

  • Schenck J (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894

    CAS  PubMed  Google Scholar 

  • Small DP, Huner NP, Wan W (2012) Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 33:298–308

    CAS  PubMed  Google Scholar 

  • Staudt C, Horn H, Hempel D, Neu T (2004) Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88:585–592

    CAS  PubMed  Google Scholar 

  • Sun XJ, Qin BQ, Zhu GW (2007) Release of colloidal phosphorus, nitrogen and organic carbon in the course of dying and decomposing of cyanobacteria. Environ Sci 27:341–345

    CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology-UK 147:3–9

    CAS  Google Scholar 

  • Thornton D (2002) Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol 37:149–161

    Google Scholar 

  • Tu R, Jin W, Xi T, Yang Q, Han SF, Abomohra Ael F (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res 86:132–138

    CAS  PubMed  Google Scholar 

  • Vílchez C, Garbayo I, Lobato MV, Vega J (1997) Microalgae-mediated chemicals production and wastes removal. Enzym Microb Technol 20:562–572

    Google Scholar 

  • Wang HY, Zeng XB, Guo SY (2006) Growth of Chlorella vulgaris under different magnetic treatments. Progr Mod Biomed 6:106–109

    Google Scholar 

  • Wang HY, Zeng XB, Guo SY, Li ZT (2008) Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics 29:39–46

    PubMed  Google Scholar 

  • Wang Z, Zhang J, Li E, Zhang L, Wang X, Song L (2017) Combined toxic effects and mechanisms of microsystin-LR and copper on Vallisneria natans (Lour.) Hara seedlings. J Hazard Mater 328:108–116

    CAS  PubMed  Google Scholar 

  • Widjaja A, Chien C, Ju Y (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    CAS  Google Scholar 

  • Wu ZX, Song LR (2008) Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia 47:98–104

    CAS  Google Scholar 

  • Xu H, Yan Z, Cai H, Yu G, Yang L, Jiang H (2013a) Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicol Environ Saf 98:266–272

    CAS  PubMed  Google Scholar 

  • Xu H, Yu G, Jiang H (2013b) Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere 93:75–81

    CAS  PubMed  Google Scholar 

  • Yang Z, Kong F, Shi X, Min Z, Cao H (2008) Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. J Phycol 44:716–720

    PubMed  Google Scholar 

  • Yang Z, Liu Y, Ge J, Wang W, Chen Y, Montagnes D (2010) Aggregate formation and polysaccharide content of Chlorella pyrenoidosa Chick (Chlorophyta) in response to simulated nutrient stress. BioresourTechnol 101:8336–8341

    CAS  Google Scholar 

  • Zhang X, Bishop PL (2003) Biodegradability of biofilm extracellular polymeric substances. Chemosphere 50:63–69

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the National Science Foundation of China (51308127) and the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07103-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibiao Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zhang, H., Li, Q. et al. Effects of static magnetic field on Chlorella vulgaris: growth and extracellular polysaccharide (EPS) production. J Appl Phycol 32, 2819–2828 (2020). https://doi.org/10.1007/s10811-020-02164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02164-7

Keywords

Navigation