Skip to main content

Advertisement

Log in

Heterotrophic growth and oil production from Micractinium sp. ME05 using molasses

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this study the thermo-resistant green alga Micractinium sp. ME05 was cultivated in media containing molasses as a carbon source. Shake flask experiments and 2-L bioreactor experiments were conducted at different inoculum ratios, aeration rates, and agitation speeds. The experimental condition which resulted in the highest biomass concentration (3.73 ± 0.45 g L−1) with 10% inoculum in 500-mL flasks was scaled up to 2-L flasks at two aeration rates (0.25 and 0.5 L min−1). An increase in biomass concentration from 2.35 ± 0.53 to 3.06 ± 0.21 g L−1 was observed with an increase of aeration rate from 0.25 to 0.50 L min−1, which demonstrated significant effect of aeration rate on biomass concentration (p = 0.000 < 0.05). In 2-L bioreactor experiments, highest biomass productivity (0.53 ± 0.076 g L−1 day−1) and lipid productivity (7.7 ± 1.6 g L−1 day−1) were obtained with 5% (v/v) inoculum and 50 rpm agitation speed. The principal fatty acids were palmitic acid (C16:0) and linoleic acid (C18:2) comprising 30.2 ± 1.01 and 45.2 ± 1.32% of the total fatty acid content, respectively. Thus, the present study highlights the possibility of using molasses for biomass and lipid production with Micractinium sp. ME05 under different cultivation conditions. Using low cost feedstock such as molasses would be valuable in terms of evaluating waste materials for further biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abou-Shanab RA, Raghavulu SV, Hassanin NMA, Kim s KYJ, Oh SU, Jeon B-H (2012) Manipulating nutrient composition of microalgal growth media to improve biomass yield and lipid content of Micractinium pusillum. Afr J Biotechnol 11:16270–16276

    Article  CAS  Google Scholar 

  • Azma M, Mohamed MS, Mohamad R, Rahmin RA, Ariff AB (2011) Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 53:187–195

    Article  CAS  Google Scholar 

  • Barbosa MJ, Albrecht M, Wijffels RH (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 133–152

    Chapter  Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52:407–418

    Article  CAS  Google Scholar 

  • Bouarab L, Dauta A, Loudiki M (2004) Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res 38:2706–2712

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426

    Article  CAS  Google Scholar 

  • Chen G-Q, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    Article  CAS  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009a) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuel 23:4166–4173

    Article  CAS  Google Scholar 

  • Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009b) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L. ) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396

    Article  CAS  Google Scholar 

  • Contin A, Van Der Heijden R, Ten Hoopen HJG, Verpoorte R (1998) The inoculum size triggers tryptamine or secologanin biosynthesis in a Catharanthus roseus cell culture. Plant Sci 139:205–211

    Article  CAS  Google Scholar 

  • De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  • Gaurav K, Srivastava R, Sharma JG, Singh R, Singh V (2015) Molasses based growth and lipid production by Chlorella pyrenoidosa: a potential feedstock for biodiesel. Int J Green Energy 13:320–327

    Article  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  Google Scholar 

  • Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Gurkok S, Cekmecelioglu D, Ogel ZB (2011) Optimization of culture conditions for Aspergillus sojae expressing an Aspergillus fumigatus α-galactosidase. Bioresour Technol 102:4925–4929

    Article  CAS  Google Scholar 

  • Heidari M, Kariminia HR, Shayegan J (2016) Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris. Process Saf Environ Prot 104:111–122

    Article  CAS  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Huang J, Li Y, Wan M, Yan Y, Feng F, Qu X, Wang J, Shen G, Li W, Fan J, Wang W (2014) Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresour Technol 159:8–16

    Article  CAS  Google Scholar 

  • Ji MK, Abou-Shanab RAI, Kim SH, Salama E, Lee SH, Kabra AN, Lee Y-S, Hong S, Jeon B-H (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148

    Article  Google Scholar 

  • Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P (2015) Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour Technol 188:177–184

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Kose Engin I, Cekmecelioglu D, Yücel AM, Oktem HA (2018) Enhancement of heterotrophic biomass production by Micractinium sp.ME05. Waste Biomass Valorization 9:811–820

    Article  CAS  Google Scholar 

  • Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D (2014) High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Bioresour Technol 170:115–124

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Lin Z, Raya A, Ju LK (2014) Microalga Ochromonas danica fermentation and lipid production from waste organics such as ketchup. Process Biochem 49:1383–1392

    Article  CAS  Google Scholar 

  • Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  Google Scholar 

  • Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Article  Google Scholar 

  • Lu L, Wang J, Yang G, Zhu B, Pan K (2017) Heterotrophic growth and nutrient productivities of Tetraselmis chuii using glucose as a carbon source under different C/N ratios. J Appl Phycol 29:15–21

    Article  CAS  Google Scholar 

  • Ma Q, Wang J, Lu S, Lv Y, Yuan Y (2013) Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana. Biotechnol Bioeng 110:773–784

    Article  CAS  Google Scholar 

  • Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108:2078–2087

    Article  CAS  Google Scholar 

  • Morales-Sánchez D, Tinoco-Valencia R, Kyndt J, Martinez A (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6:100

    Article  Google Scholar 

  • Najafpour GD, Poi Shan C (2003) Enzymatic hydrolysis of molasses. Bioresour Technol 86:91–94

    Article  CAS  Google Scholar 

  • Onay M, Sonmez C, Oktem HA, Yucel AM (2014) Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of central Anatolia. Bioresour Technol 169:62–71

    Article  CAS  Google Scholar 

  • Onay M, Sonmez C, Oktem HA, Yucel M (2016) Evaluation of various extraction techniques for efficient lipid recovery from thermo-resistant microalgae, Hindakia, Scenedesmus and Micractinium species. Am J Anal Chem 7:141–150

    Article  CAS  Google Scholar 

  • Pahl SL, Lewis DM, Chen F, King KD (2010) Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica. J Appl Phycol 22:165–171

    Article  CAS  Google Scholar 

  • Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O'Leary JB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339–348

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Piasecka A, KrzemiÅ„ska I, Tys J (2017) Enrichment of Parachlorella kessleri biomass with bioproducts: oil and protein by utilization of beet molasses. J Appl Phycol 29:1735–1743

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Anderson RA (2005) Photobioreactors and fermentors: the light and dark sides of growing algae. In: Andersen Robert (ed) Algal culturing techniques. Elsevier Academic Press, NY pp 189–203

  • Singhasuwan S, Choorit W, Sirisansaneeyakul S, Kokkaew N, Chisti Y (2015) Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. J Biotechnol 216:169–177

    Article  CAS  Google Scholar 

  • Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy 82:73–86

    Article  CAS  Google Scholar 

  • Sobczuk TM, Camacho FG, Grima EM, Chisti Y (2006) Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng 28:243–250

    Article  CAS  Google Scholar 

  • Sonmez C, Elcin E, Akin D, Oktem HA, Yucel M (2016) Evaluation of novel thermo-resistant Micractinium and Scenedesmus sp. for efficient biomass and lipid production under different temperature and nutrient regimes. Bioresour Technol 211:422–428

    Article  CAS  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production of Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang ST (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36:1383–1389

    Article  CAS  Google Scholar 

  • Yan D, Lu Y, Chen YF, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  Google Scholar 

  • Yeh KL, Chang JS (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105:120–127

    Article  CAS  Google Scholar 

  • Yen HW, Chang JT (2015) Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source. J Biosci Bioeng 119:580–584

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out at the Middle East Technical University (METU) Biology Department Plant Biotechnology Laboratory and METU Food Engineering Department Bioprocess Laboratory. We would like to thank Asst. Prof. Dr. Melih Onay for his isolation and characterization of microalgal species used in this study.

Funding

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) Project Number 114Z487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Avni Oktem.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engin, I.K., Cekmecelioglu, D., Yücel, A.M. et al. Heterotrophic growth and oil production from Micractinium sp. ME05 using molasses. J Appl Phycol 30, 3483–3492 (2018). https://doi.org/10.1007/s10811-018-1486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1486-2

Keywords

Navigation