Skip to main content

Advertisement

Log in

Low level of red seaweed Pyropia columbina added to extruded maize products promotes colonic and systemic antioxidant environment in growing Wistar rats

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the effect of consumption of extruded maize product added with a low level of the red seaweed Pyropia columbina on colonic and systemic oxidative status using a growing Wistar rat model. Twenty-four (n = 24) male Wistar rats were fed for 60 days with control (C), extruded maize product group (M), or extruded maize product added with red seaweed P. columbina (MP) diets. Rats fed whit MP showed higher catalase (CAT) and glutathione reductase (GR) colon expression than those fed with M or C. Beneficial effects on intestinal mucosal barrier function were observed, which was manifested in decrease of cecal pH (10%) and mucinase activity (67%) and increase of sIgA content (53%). Rats fed with MP diet showed lower cyclooxygenase-2 (COX-2; 43%), inducible nitric oxide synthase (iNOS; 49%), and NF-κβ transcription factor (27%) expression in distal colon than those fed with M or C diets. Also, MP diet exerted a significant antioxidant effect on the serum and liver, increasing hepatic redox index, CAT, and GR activity. Apparent calcium absorption, total skeleton bone mineral content, and bone mineral density of total body were the same among groups. The type of dietary fiber and phenolic compounds from P. columbina could promote antioxidant environment in growing Wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albarracín M, Weisstaub A, Zuleta A, Mandalunis P, González R, Drago S (2014) Effects of extruded whole maize, polydextrose and cellulose as sources of fibre on calcium bioavailability and metabolic parameters of growing Wistar rats. Food Funct 5:804–810

    Article  PubMed  Google Scholar 

  • Albarracín M, Weisstaub A, Zuleta A, Drago S (2016a) Extruded whole grain diets based on brown, soaked and germinated rice. Effects on the lipid profile and antioxidant status of growing Wistar rats. Part II. Food Funct 7:2729–2735

    Article  PubMed  Google Scholar 

  • Albarracín M, Weisstaub A, Zuleta A, Drago S (2016b) Extruded whole grain diets based on brown, soaked and germinated rice. Effects on cecum health, calcium absorption and bone parameters of growing Wistar rats. Part I. Food Funct 7:2722–2728

    Article  PubMed  Google Scholar 

  • AOAC (1995) Official methods of analysis of AOAC International, 16th edn. Horowitz, Washigton DC

    Google Scholar 

  • Barnes P, Karin M (1997) Nuclear factor-κβ—a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Cian R, López-Posadas R, Drago S, Sánchez de Medina F, Martínez-Augustín O (2012) Immunomodulatory properties of the protein fraction from Phorphyra columbina. J Agric Food Chem 60:8146–8154

    Article  CAS  PubMed  Google Scholar 

  • Cian R, Caballero M, Sabbag N, Gonzalez R, Drago S (2014a) Bio-accessibility of bioactive compounds (ACE inhibitors and antioxidants) from extruded maize products added with a red seaweed Porphyra columbina. LWT-Food Sci Technol 55:51–58

    Article  CAS  Google Scholar 

  • Cian R, Fajardo M, Alaiz M, Vioque J, González R, Drago S (2014b) Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. Int J Food Sci Nutr 65:299–305

    Article  CAS  PubMed  Google Scholar 

  • Cian R, Salgado P, Drago S, González R, Mauri A (2014c) Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers. Food Chem 146:6–14

    Article  CAS  PubMed  Google Scholar 

  • Cian R, Drago S, Sánchez de Medina F, Martínez-Augustin O (2015) Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Mar Drugs 13:5358–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasena T, Menon V (2003) Fenugreek affects the activity of β-glucuronidase and mucinase in the colon. Phytother Res 17:1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Dvir I, Chayoth R, Sod-Moriah U, Shany S, Nyska A, Stark A, Madar Z, Arad S (2000) Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Br J Nutr 84:469–476

    CAS  PubMed  Google Scholar 

  • Figueiredo F, Encarnação T, Campos M (2016) Algae as functional foods for the elderly. Food Nutr Sci 7:1122–1148

    Article  CAS  Google Scholar 

  • Fitzgerald C, Gallagher E, Tasdemir D, Hayes M (2011) Heart health peptides from macroalgae and their potential use in functional foods. J Agric Food Chem 59:6829–6836

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasso S (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2012) Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats. Food Chem 135:806–811

    Article  PubMed  Google Scholar 

  • Goñi I, Jiménez-Escrig A, Gudiel M, Saura-Calixto F (2005) Artichoke (Cynara scolymus L) modifies bacterial enzymatic activities and antioxidant status in rat cecum. Nutr Res 25:607–615

    Article  Google Scholar 

  • Gressler V, Yokoya N, Fujii M, Colepicolo P, Mancini J, Torres R, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590

    Article  CAS  Google Scholar 

  • Gudiel-Urbano M, Goñi I (2002) Effect of edible seaweeds (Undaria pinnatifida and Porphyra ternera) on the metabolic activities of intestinal microflora in rats. Nutr Res 22:323–331

    Article  CAS  Google Scholar 

  • Hamed I, Özogul F, Özogul Y, Regenstein J (2015) Marine bioactive compounds and their health benefits: a review. Compr Rev Food Sci 14:446–465

    Article  CAS  Google Scholar 

  • Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Honkanen P (2009) Consumer acceptance of (marine) functional food. In: Luten J (ed) The Nordic Network on Marine Functional Food (MARIFUNC). Wageningen Academic Publishers, Oslo, pp 141–154

    Google Scholar 

  • Isaka S, Cho K, Nakazono S, Abu R, Ueno M, Kim D, Oda T (2015) Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). Int J Biol Macromol 74:68–75

    Article  CAS  PubMed  Google Scholar 

  • Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice. Plant Foods Hum Nutr 63:163–169

    Article  CAS  PubMed  Google Scholar 

  • Jackson C, Dini J, Lavandier C, Rupasinghe H, Faulkner H, Poysa V, Buzzell D, De Grandis S (2002) Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochem 37:1117–1123

    Article  CAS  Google Scholar 

  • Jiang Z, Hama Y, Yamaguchi K, Oda T (2012) Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. J Biochem 151:65–74

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132

    Article  Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Tenorio M, Rupérez P (2013) Antioxidant and prebiotic effects of dietary fiber co-travelers from sugar Kombu in healthy rats. J Appl Phycol 25:503–512

    Article  Google Scholar 

  • Katayama M, Fukuda T, Okamura T, Suzuki E, Tamura K, Shimizu Y, Suda Y, Suzuki K (2011) Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Anim Sci J 82:274–281

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Kim J, Choi W, Lee S (2008) Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr Res Pract 2:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Königsberg Fainstein M (2007) Nrf2: La historia de un nuevo factor de transcripción que responde a estrés oxidativo. Revista de Educación Bioquímica 26:18–25

    Google Scholar 

  • Kulshreshtha G, Rathgeber B, Stratton G, Thomas N, Evans F, Critchley A, Hafting J, Prithiviraj B (2014) Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult Sci 93:2991–3001

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Brown L (2013) Seaweeds as potential therapeutic interventions for the metabolic syndrome. Rev Endocr Metab Disord 14:299–308

    Article  CAS  PubMed  Google Scholar 

  • López-Oliva M, Pozuelo M, Rotger R, Muñoz-Martínez E, Goñi I (2013) Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-x L expression and minimising oxidative stress in rat distal colonic mucosa. Br J Nutr 109:4–16

    Article  PubMed  Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Proteins measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Macfarlane S, Macfarlane G, Cummings J (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24:701–714

    Article  CAS  PubMed  Google Scholar 

  • Maynard L (1994) The Atwater system of calculating the caloric value of diets. J Nutr 28:443–452

    Google Scholar 

  • Perez-Recalde M, Matulewicz M, Pujol C, Carlucci M (2014) In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from red seaweed Nemalion helminthoides. Int J Biol Macromol 63:38–42

    Article  CAS  PubMed  Google Scholar 

  • Reeves P, Nielsen F, Fahey G (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    Article  CAS  PubMed  Google Scholar 

  • Shiau S, Chang G (1983) Effects of dietary fiber on fecal mucinase and beta-glucuronidase activity in rats. J Nutr 113:138–144

    Article  CAS  PubMed  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Tsuge K, Okabe M, Yoshimura T, Sumi T, Tachibana H, Yamada K (2004) Dietary effects of porphyran from Porphyra yezoensis on growth and lipid metabolism of Sprague-Dawley rats. Food Sci Technol Res 10:147–151

    Article  CAS  Google Scholar 

  • Villanueva M, Morcillo M, Tenorio M, Mateos-Aparicio I, Andrés V, Redondo-Cuenca A (2014) Health-promoting effects in the gut and influence on lipid metabolism of Himanthalia elongata and Gigartina pistillata in hypercholesterolaemic Wistar rats. Eur Food Res Technol 238:409–416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors read and approved the final manuscript. The authors are thankful to CAI + D 2011 PI 0292 LI of the Universidad Nacional del Litoral for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl E. Cian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cian, R.E., Llopart, E., López-Oliva Muñoz, M.E. et al. Low level of red seaweed Pyropia columbina added to extruded maize products promotes colonic and systemic antioxidant environment in growing Wistar rats. J Appl Phycol 30, 637–648 (2018). https://doi.org/10.1007/s10811-017-1259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1259-3

Keywords

Navigation