Skip to main content
Log in

Cell disruption of Chlorella vulgaris using active extracellular substances from Bacillus thuringiensis ITRI-G1 is a programmed cell death event

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae are rich resources for high-value nutrients and biodiesel production. However, extraction of these valuable compounds from them requires costly energy-consuming procedures due to their rigid cell walls. Application of cell-disruptive agents, the AES-Bt agents, extracted from an algicidal bacterium, Bacillus thuringiensis ITRI-G1, are a promising way to reduce the cost of cell disruption. Treatment with AES-Bt agents resulted in a rapid decline of photosynthesis ability and caused cell death in Chlorella vulgaris. Hallmarks of programmed cell death (PCD), including chromatin condensation, DNA fragmentation, and phosphatidylserine externalization, were detected in C. vulgaris cells treated with the AES-Bt agents. Therefore, the cell disruption effect caused by application of the AES-Bt agents can be due to the occurrence of PCD. Similar to other PCDs, the PCD caused by AES-Bt agents was also associated with increased reactive oxygen species (ROS). However, co-treatments with diphenyleneiodonium chloride (DPI), an NAD(P)H oxidase inhibitor, or N,N′-dimethylthiourea (DMTU), a hydrogen peroxide (H2O2) trap, with the AES-Bt agents successfully reduced ROS production, and more cells displayed a feature of PCD detected after the co-treatments. In conclusion, the AES-Bt agents can promote PCD of microalgae; however, the mechanism may not be through induction of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelaziz AE, Leite GB, Hallenbeck PC (2014) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34:1807–1836

    Article  Google Scholar 

  • Bai MD, Chen CY, Lu WC, Wan HP, Ho SH, Chang JS (2015) Enhancing the oil extraction efficiency of Chlorella vulgaris with cell-disruptive pretreatment using active extracellular substances from Bacillus thuringiensis ITRI-G1. Biochem Eng J 101:185–190

    Article  CAS  Google Scholar 

  • Bevers EM, Williamson PL (2016) Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol Rev 96:605–645

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5:551–562

    Article  CAS  PubMed  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  • Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14

    Article  Google Scholar 

  • Jimenez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60:815–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuba KC, Vavilala SL, D’Souza JS (2015) Apoptosis-like cell death in unicellular photosynthetic organisms. Algal Res 12:126–133

    Article  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Li Y, Zhu H, Guan CW, Zhang HJ, Guo JJ, Chen ZR, Cai GJ, Lei XQ, Zheng W, Tian Y, Xiong XJ, Zheng TL (2014) Towards molecular, physiological, and biochemical understanding of photosynthetic inhibition and oxidative stress in the toxic Alexandrium tamarense induced by a marine bacterium. Appl Microbiol Biotechnol 98:4637–4652

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu H, Lei XQ, Zhang HJ, Cai GJ, Chen ZR, Fu LJ, Xu H, Zheng TL (2015a) The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp Y35. Front Microbiol 6:992

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhu H, Lei XQ, Zhang HJ, Guan CW, Chen ZR, Zheng W, Xu H, Tian Y, Yu ZM, Zheng TL (2015b) The first evidence of deinoxanthin from Deinococcus sp Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J Hazard Mater 290:87–95

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lei X, Zhu H, Zhang H, Guan C, Chen Z, Zheng W, Fu L, Zheng TL (2016) Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci Rep 6:21984

  • Liao CL, Liu XB, Liu RF, Shan LN (2015) Two novel algicidal isolates kill Chlorella pyrenoidosa by inhibiting their host antioxidase activities. Appl Biochem Biotechnol 177:567–576

    Article  CAS  PubMed  Google Scholar 

  • Lord CE, Gunawardena AH (2012) Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 91:603–613

    Article  CAS  PubMed  Google Scholar 

  • Maghsoudi N, Zakeri Z, Lockshin RA (2012) Programmed cell death and apoptosis—where it came from and where it is going: from Elie Metchnikoff to the control of caspases. Exp Oncol 34:146–152

    CAS  PubMed  Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    Article  PubMed  Google Scholar 

  • Moharikar S, D’Souza JS, Kulkarni AB, Rao BJ (2006) Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses. J Phycol 42:423–433

    Article  CAS  Google Scholar 

  • Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–961

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Kim D, Miyazaki Y, Yamaguchi K, Takeshita S, Oda T (2006) Mode of action of an antialgal agent produced by a marine gammaproteobacterium against Chattonella marina. Aquat Microb Ecol 45:255–262

    Article  Google Scholar 

  • Ramsdale M (2012) Programmed cell death in the cellular differentiation of microbial eukaryotes. Curr Opin Microbiol 15:646–652

    Article  CAS  PubMed  Google Scholar 

  • Rysavy NM, Shimoda LM, Dixon AM, Speck M, Stokes AJ, Turner H, Umemoto EY (2014) Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BioArchitecture 4:127–137

    PubMed  Google Scholar 

  • Shi SY, Tang DS, Liu YD (2009) Effects of an algicidal bacterium Pseudomonas mendocina on the growth and antioxidant system of Aphanizomenon flos-aquae. Curr Microbiol 59:107–112

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Yordanova ZP, Iakimova ET, Cristescu SM, Harren FJ, Kapchina-Toteva VM, Woltering EJ (2010) Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biol Int 34:301–308

    Article  CAS  PubMed  Google Scholar 

  • Yordanova ZP, Woltering EJ, Kapchina-Toteva VM, Iakimova ET (2013) Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii. Ann Bot 111:191–205

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, An X, Zhou Y, Zhang B, Zhang S, Li D, Chen Z, Li Y, Bai S, Lv J, Zheng W, Tian Y, Zheng T (2013) Effect of oxidative stress induced by Brevibacterium sp BS01 on a HAB causing species—Alexandrium tamarense. PLoS One 8:e63018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Wang J, Guo Z, Tan H, Zhu X (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118

    Article  Google Scholar 

  • Zuo Z, Zhu Y, Bai Y, Wang Y (2012) Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiol Biochem 51:175–184

    Article  CAS  PubMed  Google Scholar 

  • Zuppini A, Andreoli C, Baldan B (2007) Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol 48:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Zuppini A, Gerotto C, Baldan B (2010) Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol 51:884–895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the editor, Dr. Michael A. Borowitzka, and reviewers for their excellent comments on the manuscript. We appreciate Professor Jo-Shu Chang, National Cheng Kung University, Taiwan, for providing us the culture of C. vulgaris. We also would like to thank Professor Tse-Min Lee, National Sun Yat-sen University, Taiwan, for providing information on microalgal culture. This work was supported by the Bureau of Energy, Ministry of Economic Affairs, ROC, Ministry of Science and Technology, ROC (102-2313-B-002-067-MY3) and Academia Sinica, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Chih Chen.

Additional information

Ming-Der Bai and Hui-Ju Hsu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, MD., Hsu, HJ., Wu, SI. et al. Cell disruption of Chlorella vulgaris using active extracellular substances from Bacillus thuringiensis ITRI-G1 is a programmed cell death event. J Appl Phycol 29, 1307–1315 (2017). https://doi.org/10.1007/s10811-017-1058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1058-x

Keywords

Navigation