Skip to main content
Log in

Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A green microalga, Acutodesmus sp., a close relative of Acutodesmus deserticola, was isolated from the wastewater discharges of an oil refinery in India. This study examined the effects of light intensity, temperature, pH, and high-CO2 treatments (up to 20 %) on the growth of the alga and investigated the effects of different CO2 treatments on its macromolecular composition (protein, carbohydrate, and lipids). Under controlled laboratory conditions, the alga showed high growth rates over a wide range of light (up to 700 μmol photons m−2 s−1), temperature (up to 40 °C), and pH (5–10) conditions. In the stationary phase, the highest protein and carbohydrate content was found to be 71.52 and 40.72 % of dry weight at 5 and 15 % CO2, respectively. After 5 days of cultivation, the maximum dry weight biomass attained in these cultures was 1.149, 1.99, 1.75, and 1.65 g L−1 at 5, 10, 15, and 20 % CO2, respectively, indicating that this strain has significant tolerance to CO2. These results indicate that this strain is a promising candidate for use in biofixation of CO2 from the flue gases emitted by industries, and it also has a strong potential as a feedstock for value-added substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-qasmi M, Member NR, Talebi S, Al-Rajhi S, Al-Barwani T (2012) A review of effect of light on microalgae growth. In: Proceedings of the World Congress on Engineering. London, U.K., pp 608–10

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273

    Article  CAS  Google Scholar 

  • Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    Article  CAS  Google Scholar 

  • Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenh Gas Sci Technol 35:21–35

    Article  Google Scholar 

  • Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173

    Article  Google Scholar 

  • Doan TTY, Obbard JP (2011) Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol 23:895–901

    Article  CAS  Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:1–7

    Article  Google Scholar 

  • Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton J, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Franklin L, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Springer, Dordrecht, pp 351–384

    Chapter  Google Scholar 

  • Gatenby CM, Orcutt DM, Kreeger DA, Parker BC, Jones VA, Neves RJ (2003) Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15:1–11

    Article  CAS  Google Scholar 

  • Glibert PM, Azanza R, Burford M et al (2008) Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull 56:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg Technol 8:433–436

    Article  CAS  Google Scholar 

  • Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2014) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol 172:1–13

    Article  Google Scholar 

  • Hegewald E, Bock C, Krienitz L (2013) A phylogenetic study on Scenedesmaceae with the description of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae). Fottea 13:149–164

    Article  Google Scholar 

  • Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Xiang W, Yang F, Hu Q, Tang M, Chen C, Wang G, Dai S, Wu H, Wu H (2015) Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. J Appl Phycol. DOI: 10.1007/s10811-015-0610-9 1–10.

  • Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  • Kastánek F, Sabata S, Solcová O, Maléterová Y, Kastánek P, Brányiková I, Kuthan K, Zachleder V (2010) In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Manag Res 28:961–966

    Article  PubMed  Google Scholar 

  • Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  PubMed  Google Scholar 

  • Lara-Gil JA, Álvarez MM, Pacheco A (2014) Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. J Appl Phycol 26:357–368

    Article  CAS  Google Scholar 

  • Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of Western North America. J Phycol 40:1127–1137

    Article  Google Scholar 

  • Liu J, Yuan C, Hu G, Li F (2012) Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11–1 under nitrogen limitation. Appl Biochem Biotechnol 166:2127–2137

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47

    Article  CAS  PubMed  Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348

    Article  CAS  PubMed  Google Scholar 

  • Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46:431–441

    Article  CAS  Google Scholar 

  • Onay M, Sonmez C, Oktem HA, Yucel AM (2014) Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour Technol 169:62–71

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Rahaman MSA, Cheng LH, Xu XH et al (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sustain Energy Rev 15:4002–4012

    Article  Google Scholar 

  • Ramaraj R, Tsai DDW, Chen PH (2014) Freshwater microalgae niche of air carbon dioxide mitigation. Ecol Eng 68:47–52

    Article  Google Scholar 

  • Ren HY, Liu BF, Ma C, Zhao L, Ren NQ (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritschard RL (1992) Marine algae as a CO2 sink. Water Air Soil Pollut 64:289–303

    Article  CAS  Google Scholar 

  • Seth JR, Wangikar PP (2015) Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol Bioeng 112:1281–1296

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Thielmann J, Tolbert NE, Goyal A, Sneger H (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92:622–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A (2013) A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 86:373–380

    Article  CAS  PubMed  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  CAS  PubMed  Google Scholar 

  • Vidyashankar S, Deviprasad K, Chauhan VS, Ravishankar GA, Sarada R (2013) Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresour Technol 144:28–37

    Article  CAS  PubMed  Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15:233–247

    Article  Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517

    Article  Google Scholar 

  • Wang L, Li Y, Sommerfeld M, Hu Q (2013) A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresour Technol 129:289–295

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Ohmura N, Saiki H (1992) Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Convers Manag 33:545–552

    Article  CAS  Google Scholar 

  • Welter C, Schwenk J, Kanani B, Van Blargan J, Belovich JM (2013) Minimal medium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus. AICHE 32:937–945

    CAS  Google Scholar 

  • Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46:1868–1876

    Article  CAS  Google Scholar 

  • Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455

    Article  CAS  Google Scholar 

  • Zhang T-Y, Wu Y-H, Hu H-Y (2014) Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1. Water Sci Technol 69:2492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to JSW Foundation, India, for providing financial assistance for this research. We are also grateful to Dr. Kumar M. Iyer of JSW Steel for his useful suggestions and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Beardall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, P., Sohoni, S., Wangikar, P.P. et al. Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga. J Appl Phycol 28, 2631–2640 (2016). https://doi.org/10.1007/s10811-016-0797-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0797-4

Keywords

Navigation