Skip to main content
Log in

De novo transcriptome analysis of carotenoid and polyunsaturated fatty acid metabolism in Rhodomonas sp.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Rhodomonas spp. are often used in aquaculture as food for commercially reared invertebrates (e.g., shellfish and shrimp larva) and have thus received considerable research attention. Unfortunately, further molecular research is impeded by the lack of available genomic data. In this study, we sequenced and de novo assembled a complete Rhodomonas sp. transcriptome. A total of 18,070,504 clean reads were produced and assembled into 64,974 transcripts, with a mean size of 737.6 bp. Open reading frame (ORF) prediction indicated that 57,409 (88.36 %) transcripts possessed ORFs. BLASTX analyses allowed us to annotate 39,582 (60.92 %) of the transcripts with putative functions. At least one gene ontology term was assigned to all 26,462 (40.73 %) putative genes, and 28,075 (43.21 %) putative proteins were classified into 25 categories by Clusters of Orthologous Groups (COG) database analysis. Functional annotation from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database assigned 12,200 (18.78 %) putative genes to 305 pathways. Furthermore, genes encoding putative enzymes that may be involved in the synthesis of alloxanthin and polyunsaturated fatty acids (mainly docosahexaenoic acid and eicosapentaenoic acid) were identified within the transcriptome. In conclusion, this is the most comprehensive transcriptomic resource currently available for Rhodomonas sp. and will accelerate research progress in the molecular biology of Rhodomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren G, Lundstedt L, Brett N, Forsberg C (1990) Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12:809–818

    Article  CAS  Google Scholar 

  • Barlow SB, Kugrens P (2002) Cryptomonads from the Salton Sea, California. Hydrobiologia 473:129–137

    Article  Google Scholar 

  • Bartley GE, Scolinik PA (1995) Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng RB, Ge YQ, Yang B, Zhong XM, Lin XZ, Huang Z (2013) Cloning and functional analysis of putative malonyl-CoA: acylcarrier protein transacylase gene from the docosahexaenoicacid-producer Schizochytrium sp. TIO1101. World J Microbiol Biotech 29:959–967

    Article  CAS  Google Scholar 

  • Chi XY, Zhang XW, Guan XY et al (2008) Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal Δ12 desaturases in Chlamydomonas reinhardtii. J Microbiol 46:189–201

  • Choi SK, Matsuda S, Hoshino T, Peng X, Misawa N (2006) Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Appl Microbiol Biotech 72:1238–1246

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Costard GS, Machado RR, Barbarino E, Martino RC, Lourenço SO (2012) Chemical composition of five marine microalgae that occur on the Brazilian coast. Int J Fish Aquacult 4:191–201

    CAS  Google Scholar 

  • Cox PC, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui HL, Wang YC, Qin S (2011) Molecular evolution of lycopene cyclases involved in the formation of carotenoids in eukaryotic algae. Plant Molec Biol Rep 29:1013–1020

    Article  CAS  Google Scholar 

  • Da Silva AF, Lourençob SO, Chaloub RM (2009) Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot 91:291–297

    Article  Google Scholar 

  • Davies AJ, Khare A, Mallams AK, Massy-Westropp RA, Moss GP, Weedon BCL (1984) Carotenoids and related compounds. Part 38. Synthesis of (3RS, 3’RS)-alloxanthin and other acetylenes. J Chem Soc. Perkin Trans 1:2147–2157

    Article  Google Scholar 

  • Ewing B, Green P (1998) Base-Calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, Christou P (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48

    Article  Google Scholar 

  • Gagné R, Tremblay R, Pernet F, Miner P, Samain JF, Olivier F (2010) Lipid requirements of the scallop Pecten maximus (L.) during larval and post-larval development in relation to addition of Rhodomonas salina in diet. Aquaculture 309:212–221

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotech 29:644–652

    Article  CAS  Google Scholar 

  • Guang YZ (2011) Studies on response of arctic microalgae to changes of temperature and irradiance applying fluorescent techniques. Dissertation. Ocean University of China

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6(10):e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 26–60

    Google Scholar 

  • Hauth AM, Maier UG, Lang BF, Burger G (2005) The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids Res 33:4433–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG (2006) Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41:739–747

  • Hwangbo K, Ahn JW, Lim JM, Park Y, Liu JR, Jeong WJ (2014) Overexpression of stearoyl-ACP desaturase enhances accumulations of oleic acid in the green alga Chlamydomonas reinhardtii. Plant Biotech Rep 8:135–142

    Article  Google Scholar 

  • Jayaraman S, Knuth ML, Cantwell M, Santos A (2011) High performance liquid chromatographic analysis of phytoplankton pigments using a C16-amide column. J Chromatogr A 1218:3432–3438

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(suppl 1):D354–D357

  • Khan H, Kozera C, Curtis BA et al (2007a) Retrotransposons and tandem repeat sequences in the nuclear genomes of cryptomonad algae. J Molec Evol 64:223–236

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007b) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: Lateral Transfer of putative dna replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842

    Article  CAS  PubMed  Google Scholar 

  • Lafarga-De la Cruz F, Valenzuela-Espinoza E, Millan-Nunez R, Trees CC, Santamaria-del-Angel E, Nunez-Cebrero F (2006) Nutrient uptake chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquacult Eng 35:51–60

    Article  Google Scholar 

  • Li DJ, Deng Z, Qin B, Liu XH, Men ZH (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 13:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang CW, Zhao FQ, Meng CX, Tan CP, Qin S (2006) Molecular cloning, characterization and evolutionary analysis of phytoene desaturase (PDS) gene from Haematococcus pluvialis. World J Microbiol Biotech 22:59–64

    Article  CAS  Google Scholar 

  • Liu FL, Sun XT, Wang WJ, Liang ZR, Wang FJ (2014) De novo transcriptome analysis-gained insights into physiological and metabolic characteristics of Sargassum thunbergii (Fucales, Phaeophyceae). J Appl Phycol 26:1519–1526

    Article  CAS  Google Scholar 

  • Lund JWG (1962) A rarely recorded but very common British alga, Rhodomonas minuta Skuja. Brit Phycol Bull 2:133–139

  • Ma XL, Yu JZ, Zhu BH, Pan KH, Pan J, Yang GP (2011) Cloning and characterization of a delta-6 desaturases encoding gene from Nannochloropsis oculata. Chinese J Oceanol Limnol 29:290–296

    Article  CAS  Google Scholar 

  • Markham JE, Elborough KM, Slabas AR (1997) Acetyl-CoA Carboxylase from Brassica napus. In: Williams JP et al (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer, Dordrecht, pp 11–13

    Chapter  Google Scholar 

  • Metz JG, Roessler P, Facciotti D et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Novarino G (2005) Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea). Scient Mar 69:47–74

  • Pennington FC, Haxo FT, Borch G, Jensen SL (1985) Carotenoids of Cryptophyceae. Biochem Syst Ecol 13:215–219

    Article  CAS  Google Scholar 

  • Roessler PG (1995) Expression of an algal acetyl-CoA carboxylase gene in E.coli. In: Kader JC et al. (eds) Plant Lipid Metabolism, Kluwer Dordrecht, pp. 46–48

  • Ryckebosch E, Bruneel C, Verhalle RT, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    Article  PubMed  Google Scholar 

  • Yamano Y, Maoka T, Wada A (2014) Synthesis of (3S,3′S)- and meso-stereoisomers of alloxanthin and determination of absolute configuration of alloxanthin isolated from aquatic animals. Mar Drugs 12:2623–2632

  • Yan P, Gao XZ, Shen WT, Zhou P (2011) Cloning and expression analysis of phytoene desaturase and ξ-carotene desaturase genes in Carica papaya. Mol Biol Rep 38:785–791

    Article  CAS  PubMed  Google Scholar 

  • Yazdi HR, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  Google Scholar 

  • Yazdi HR, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotech Biofuels 5:74

    Article  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucl Acids Res 34(suppl 2):W293–W297

Download references

Acknowledgments

This research was funded by the Special Project of Scientific Research Foundation of Third Institute of Oceanography, State Oceanic Administration of China (No. 2014008), the Public science and technology research funds projects of ocean (201305022), and the project of Xiamen Southern Oceanographic Center (No. 14CZP028HJ02). The authors are grateful to the anonymous reviewers for their constructive comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhi Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, W., Wang, Z. et al. De novo transcriptome analysis of carotenoid and polyunsaturated fatty acid metabolism in Rhodomonas sp.. J Appl Phycol 28, 1649–1656 (2016). https://doi.org/10.1007/s10811-015-0703-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0703-5

Keywords

Navigation