Skip to main content
Log in

Microalgal fatty acid composition: implications for biodiesel quality

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

An Erratum to this article was published on 16 March 2012

Abstract

The fuel properties of microalgal biodiesel are predicted using published microalgal fatty acid (FA) compositions and predictive fuel models. Biodiesels produced from the microalgae investigated are predicted to have extremely poor oxidative stabilities and the majority also have poor cold-flow properties. The cetane number in most cases is out of specification, but less so than the oxidative stability and cold flow. These findings support the idea that feedstocks rich in monounsaturated fatty acids (MUFAs) are desirable for biodiesel but the composition of the saturated fatty acids (SFAs) is also shown to be of great importance. There is an apparent relationship between algal class and the percentage of FAs represented by MUFA. This potentially allows for the identification of high-MUFA algal classes, or at least provides some basis for researchers to make initial selections of target classes for bioprospecting. Comparisons of FA groups between algal classes also show that the SFAs of Mediophyceae contain significantly higher proportions of C14:0, which is in contrast to the normally abundant C16:0 and the Mediophyceae therefore have better cold-flow characteristics than other classes with similar total SFA contents. Certain particularly promising cases for biodiesel production are presented as species level examples of feedstocks that are close to satisfying the biodiesel standards and to further illustrate the challenges that remain. Variation in FA composition as a response to changes in certain environmental variables forms another important facet to feedstock selection and is briefly considered, with suggestions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Biodiesel is most commonly produced using methanol however other alcohols, e.g. ethanol and isopropanol may be used and this affects the properties of the biodiesel to an extent (see Knothe 2005).

  2. Certain properties of the fuel can also be affected by the production process, the details of which are beyond the scope of this review (see Knothe 2006).

  3. Consider two feedstocks with SFA contents of 50%. The first, with C16:0 making up the entire 50% would have a CP of 19°C. The second, with the 50% made up of 40% C16:0 and 10% C18:0 would have a CP of 16°C. This example illustrates the freezing/melting point depression that is caused by having a mixture of solutes, see Dunn (2008) for more detail.

References

  • Allen CAW, Watts KC, Ackman RG, Pegg MJ (1999) Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel 78:1319–1326

    Article  CAS  Google Scholar 

  • Alvarez-Cobelas M (1989) Lipids in microalgae. A review II. Environment. Grasas y Aceites 40:213–223

    CAS  Google Scholar 

  • Alvarez-Cobelas M, Zarco-Lechado J (1989) Lipids in microalgae. A review. I. Biochemistry. Grasas y Aceites 40:118–145

    CAS  Google Scholar 

  • Arisz SA, van Himbergen JAJ, Musgrave A, van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Tornabene G, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Fishler R, Schneller A (1987) Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Mar Biol 95:31–36

    Article  CAS  Google Scholar 

  • Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Ass UK 49:97–116

    Article  CAS  Google Scholar 

  • Collins RP, Kalnins K (1969) The fatty acids of Cryptomonas ovate var. palustrus. Phyton 26:47–50

    Google Scholar 

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and noncatalytic supercritical methanol transesterification methods. Prog Energy Combust 31:466–487

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manage 50:14–34

    Article  CAS  Google Scholar 

  • Dunn RO (2005) Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process Technol 86:1071–1085

    Article  CAS  Google Scholar 

  • Dunn RO (2008) Crystallization behavior of fatty acid methyl esters. J Am Oil Chem Soc 85:961–972

    Article  CAS  Google Scholar 

  • Dunn RO, Bagby MO (1995) Low-temperature properties of triglyceride-based diesel fuels: Transesterified methyl esters and petroleum middle distillate/ester blends. J Am Oil Chem Soc 72:895–904

    Article  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134

    Article  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi J, Jeffrey SW (1993) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochem 35:155–161

    Article  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2010) AlgaeBase. http://www.algaebase.org. Accessed on 10 October 2010

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  PubMed  CAS  Google Scholar 

  • Harwood JL, Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 16:1–53

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670

    Article  CAS  Google Scholar 

  • Joseph JD (1975) Identification of 3, 6, 9, 12, 15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids 10:395–403

    Article  PubMed  CAS  Google Scholar 

  • Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264–278

    PubMed  CAS  Google Scholar 

  • Kato M, Sakai M, Kyoko A, Hisato I, Hiroshi S (1996) Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83:823–833

    Article  CAS  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:677–699

    Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Knothe G, Dunn RO (2009) A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc 86:843–856

    Article  CAS  Google Scholar 

  • Knothe G, Matheaus AC, Ryan TW III (2003) Cetane numbers of branched and straight chain fatty esters determined in an ignition quality tester. Fuel 82:971–975

    Article  CAS  Google Scholar 

  • Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS, Champaign

    Book  Google Scholar 

  • Krisnangkura K, Yimsuwan T, Pairintra P (2006) An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel 85:87–113

    Article  Google Scholar 

  • Lapuerta M, Rodrıguez-Fernandez J, Font de Mora E (2009) Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. En Pol 37:4337–4344

    Article  Google Scholar 

  • Lee RF, Loeblich AR III (1971) Distribution of 21:6 hydrocarbon and its relationship to 22:6 fatty acid in algae. Phytochemistry 10:593–602

    Article  CAS  Google Scholar 

  • Liu C, Lin L (2001) Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Bot Bull Acad Sin 42:207–214

    CAS  Google Scholar 

  • Lopes da Silva T, Reis A, Medeiros R, Cristina Oliveira A, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Google Scholar 

  • Lopes JCA, Boros L, Krähenbühl MA, Meirelles AJA, Daridon JL, Pauly J, Marrucho IM, Coutinho JAP (2008) Prediction of cloud points of biodiesel. Energy Fuels 22:747–752

    Article  CAS  Google Scholar 

  • Lopez Alonso D, Belarbi E-H, Rodriguez-Ruiz J, Segura CI, Gimenez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481

    Article  CAS  Google Scholar 

  • Lopez Alonso D, Belarbi E-H, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Molina Grima E (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate Gymnodinium sp. in batch culture. Phytochemistry 63:145–153

    Article  PubMed  CAS  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Mercer EI, London RA, Kent ISA, Taylor AJ (1974) Sterols, sterol esters and fatty acids of Botrydium granulatum, Tribonema aequale and Monodus subterraneus. Phytochemistry 13:845–852

    Article  Google Scholar 

  • Mittelbach M (1996) Diesel fuel derived from vegetable oils, VI: specifications and quality control of biodiesel. Biores Technol 56:7–11

    Article  CAS  Google Scholar 

  • Mourente G, Lubian LM, Odriozola JM (1990) Total fatty acid composition as a taxonomic index of some marine microalgae used as food in marine aquaculture. Hydrobiologia 203:147–154

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Biores Technol 100:261–268

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh L, Parry DL (1998) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  Google Scholar 

  • Renaud SM, Thinh L, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Servel M, Derrien CCA, De Coifard L, Roeck-Holtzhauer Y (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693

    Article  Google Scholar 

  • Skerratt JH, Davidson AD, Nichols PD, McMeekin TA (1998) Effect of UV-B on lipid content of three Antarctic marine phytoplankton. Phytochemistry 49:999–1007

    Article  CAS  Google Scholar 

  • Thompson PA, Guo M, Harrison PJ, Whyte JNC (1992) Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J Phycol 28:488–497

    Article  CAS  Google Scholar 

  • Tong D, Hu C, Jiang K, Li Y (2010) Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. J Am Oil Chem Soc 88:415–423

    Article  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning into triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93:851–856

    Article  PubMed  CAS  Google Scholar 

  • Viso A, Marty C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  CAS  Google Scholar 

  • Volkman JK, Smith DJ, Eglinton G, Forsberg TEV, Corner EDS (1981) Sterol and fatty acid composition of four marine haptophycean algae. J Mar Bio Ass UK 61:509–527

    Article  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Yuan W, Hansen AB, Zhang Q (2009) Predicting the temperature dependent viscosity of biodiesel fuels. Fuel 88:1120–1126

    Article  CAS  Google Scholar 

  • Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance of the National Research Foundation, the University of the Witwatersrand and the South African National Energy Research Institute toward this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Robert Stansell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stansell, G.R., Gray, V.M. & Sym, S.D. Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol 24, 791–801 (2012). https://doi.org/10.1007/s10811-011-9696-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9696-x

Keywords

Navigation