Skip to main content

Advertisement

Log in

Characterization of fatty acids and proteins associated with the xanthophyll-enriched membrane fraction isolated from the thylakoid membranes of irradiance-stressed Dunaliella salina

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

It has been previously reported that a considerable amount of lutein and zeaxanthin could be fractionated, upon mild detergent treatment, from the thylakoid membranes of irradiance-stressed unicellular green alga, Dunaliella salina, into a yellow pellet fraction. Such membrane pellet was found to be devoid of chlorophylls and any known proteins of photosynthesis but rather contained a significant amount of unknown polypeptides. It was speculated that this xanthophyll-rich membrane pellet might originate from incomplete solubilization of the photoinhibited thylakoids by weak surfactants, due to extra rigidity imposed by the xanthophylls being directly imbedded into the lipid bilayer. In this study, we further characterized this membrane fraction by studying its associated proteins and fatty acid composition. Analysis by gas chromatography–mass spectrometry indicated that this yellow pellet membrane was enriched in saturated fatty acids, supporting the rigidity notion of the pellet. Protein identification by MALDI-TOF MS further revealed that at least 20 water-soluble proteins were found in association with this pellet. These proteins may originate from unspecific contamination of abundant polypeptides co-precipitated with the membrane upon fractionation. Possible explanations regarding the nature of this xanthophyll-rich membrane are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banet G, Pick U, Zamir A (2000) Light-harvesting complex II pigments and proteins in association with Cbr, a homolog of higher-plant early light-inducible proteins in the unicellular green alga Dunaliella. Planta 210:947–955. doi:10.1007/s004250050702

    Article  CAS  PubMed  Google Scholar 

  • Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008. doi:10.1105/tpc.010405

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19:567–590. doi:10.1007/s10811-007-9171-x

    Article  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    CAS  PubMed  Google Scholar 

  • Carreau JP, Dubacq JP (1979) Adaptation of macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr A 151:384–391. doi:10.1016/S0021-9673(00)88356-9

    Article  Google Scholar 

  • Ciambella C, Roepstorff P, Aro EM, Zolla L (2005) A proteomic approach for investigation of photosynthetic apparatus in plants. Proteomics 5:746–757. doi:10.1002/pmic.200401129

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 46:557–584. doi:10.1146/annurev.arplant.49.1.557

    Article  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647. doi:10.1042/BST0351643

    Article  CAS  PubMed  Google Scholar 

  • Emter O, Falk H, Sitte P (1990) Specific carotenoids and proteins as prerequisites for chromoplast tubule formation. Protoplasma 157:128–135. doi:10.1007/BF01322645

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, New Jersey, USA, pp 571–607

    Chapter  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714. doi:10.1146/annurev.arplant.47.1.685

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151. doi:10.1016/S1360-1385(98)01200-X

    Article  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767. doi:10.1073/pnas.96.15.8762

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Tardy F, Lemoine Y (1998) Photosynthetic light-harvesting function of carotenoids in higher-plant leaves exposed to high light intensities. Planta 205:242–250. doi:10.1007/s004250050317

    Article  CAS  Google Scholar 

  • Havaux M, Dall’Osto L, Cuiné S, Giuliano G, Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 279:13878–13888. doi:10.1074/jbc.M311154200

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Dall’Osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520. doi:10.1104/pp.107.108480

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373. doi:10.1093/jxb/eri023

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Polle JEW, Melis A (2001) Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem-II from photoinhibition in the green alga Dunaliella salina. Biochim Biophys Acta 1506:244–259. doi:10.1016/S0005-2728(01)00223-7

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Jimenez C, Pick U (1995) Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiol 108:1657–1664

    CAS  PubMed  Google Scholar 

  • Kim JH, Nemson JA, Melis A (1993) Photosystem II reaction center damage and repair in Dunaliella salina (green alga). Analysis under physiological and irradiance-stress conditions. Plant Physiol 103:181–189. doi:10.1104/pp.103.1.97

    Article  CAS  PubMed  Google Scholar 

  • Lechtreck K-F, Frins S, Bilski J, Teltenkötter A, Weber K, Melkonian M (1996) The cruciated microtubule-associated fibers of the green alga Dunaliella bioculata consist of a 31 kDa SF-assemblin. J Cell Sci 109:827–835

    CAS  PubMed  Google Scholar 

  • Levy H, Tal T, Shaish A, Zamir A (1993) Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein. J Biol Chem 268:20892–20896

    CAS  PubMed  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    CAS  PubMed  Google Scholar 

  • Melis A (1998) Photostasis in plants: mechanism and regulation. In: Thistle AB, Williams TP (eds) Photostasis and related phenomena. Plenum, New York, pp 207–221

    Google Scholar 

  • Melkonian M, Beech PL, Katsaros C, Schulze D (1992) Centrin-mediated cell motility in algae. In: Melkonian M (ed) Algal cell motility. Chapman & Hall, New York, pp 179–221

    Google Scholar 

  • Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot (Lond) 102:659–665. doi:10.1093/aob/mcn170

    Article  CAS  Google Scholar 

  • Morosinotto T, Caffarri F, Dall’Osto L, Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant 119:347–354. doi:10.1034/j.1399-3054.2003.00213.x

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333

    Article  CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  • Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol 81:92–96. doi:10.1104/pp. 81.1.92

    Article  CAS  PubMed  Google Scholar 

  • Sanchez J-C, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M, Wilkins MR, Hochstrasser DF (1997) Improved and simplified in-gel sample application using reswelling of dry immobilised pH gradients. Electrophoresis 18:324–327. doi:10.1002/elps.1150180305

    Article  CAS  PubMed  Google Scholar 

  • Santos FM, Mesquita JF (1984) Ultrastructural study of Haematococcus lacustris (Girod) Rostafinski (Volvocales). 1. Some aspects of carotenogenesis. Cytologia (Tokyo) 49:215–228

    Google Scholar 

  • Subczynski WK, Markowska E, Sielewiesiuk J (1991) Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta 1068:68–72. doi:10.1016/0005-2736(91)90061-C

    Article  CAS  PubMed  Google Scholar 

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235. doi:10.1016/S1360-1385(99)01414-4

    Article  PubMed  Google Scholar 

  • Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY (2006) Functional roles of the major chloroplast lipids in the violaxanthin cycle. Planta 224:719–725. doi:10.1007/s00425-006-0257-5

    Article  CAS  PubMed  Google Scholar 

  • Yokthongwattana K, Chrost B, Behrman S, Casper-Lindley C, Melis A (2001) Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. Plant Cell Physiol 42:1389–1397. doi:10.1093/pcp/pce179

    Article  CAS  PubMed  Google Scholar 

  • Yokthongwattana K, Savchenko T, Polle JEW, Melis A (2005) Isolation and characterization of a xanthophyll-rich fraction from the thylakoid membrane of Dunaliella salina (green algae). Photochem Photobiol Sci 4:1028–1034. doi:10.1039/b504814a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted with financial support in parts by Mahidol University through Center for Excellence in Protein Structure and Function and Thailand Research Fund grant # MRG4780062 to KY. JS was a Senior Research Scholar of the Thailand Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kittisak Yokthongwattana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokthongwattana, K., Sriariyanun, M., Ekaratcharoenchai, P. et al. Characterization of fatty acids and proteins associated with the xanthophyll-enriched membrane fraction isolated from the thylakoid membranes of irradiance-stressed Dunaliella salina . J Appl Phycol 22, 147–155 (2010). https://doi.org/10.1007/s10811-009-9434-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9434-9

Keywords

Navigation