Skip to main content
Log in

Dynamic viscosity and material relaxation time during shock loading

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The dynamic viscosity and characteristic relaxation time at various scale-structural levels of deformation of a shock-loaded medium are determined using concepts of multilevel solid-state mechanics. The notion of the quasi-time fractal dimension is introduced and used to calculate the indicated characteristics. Computational-experimental data for the viscosity and relaxation time are given for three materials:M2 copper, AMg6 aluminum base alloy and Armco iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Savenkov and Yu. I. Meshcheryakov “Structural viscosity of solids,” Combust., Expl., Shock Waves, 38, No. 3, 352–357 (2002).

    Article  Google Scholar 

  2. S. K. Godunov, Elements of Continuum Mechanics [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  3. L. V. Al’tshuler and B. S. Chekin, “Structure of shock waves and fundamental equations for metals,” J. Appl. Mech. Tech. Phys., No. 6, 910–918 (1987).

    ADS  Google Scholar 

  4. Ya. I. Frenkel’, Introduction to the Theory of Metals [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  5. V. I. Vladimirov, V. N. Ivanov, and N. D. Priemskii, “Mesoscopic level of plastic deformation,” in: Physics of Strength and Plasticity [in Russian], Nauka, Leningrad (1986), pp. 69–80.

    Google Scholar 

  6. B. G. Barakhtin and G. G. Savenkov, “Rotational hardening and deformations of steel in the mechanical field of a high-velocity impactor,” in: Memory Shape Effects and Other Promising Materials [in Russian], St. Petersburg State Univ., St. Petersburg (2001), pp. 326–332.

    Google Scholar 

  7. V. E. Panin, “Physical Mesomechanics of Materials,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 5, 88–108 (1999).

    MathSciNet  Google Scholar 

  8. A. Blumen, J. Klafter, and G. Zumofen, in: L. Pietronero and E. Tosatti (eds.), Fractals in Physics, North-Holland, Amsterdam (1986).

    Google Scholar 

  9. B. L. Glushak, and S. A. Novikov, and Yu. V. Bat’kov, “Constitutive equation describing high-strain rates of Al and Mg in a shock wave,” Combust., Expl., Shock Waves, No. 1, 79–83 (1992).

    Article  Google Scholar 

  10. J. W. Taylor, “Dislocation dynamics and dynamic yielding,” J. Appl. Phys., 36, No. 10, 3145–3150 (1965).

    Article  ADS  Google Scholar 

  11. S. M. Popov, “Absolute viscosity of steel,” Inzh. Sb., 1, No. 1, 27–36 (1941).

    Google Scholar 

  12. G. V. Stepanov, Elastoplastic Deformation and Fracture of Materials under Pulse Loading [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  13. R. J. Clifton, “Dynamic plasticity,” J. Appl. Mech., 50, No. 4b, 941 (1983).

    Article  MathSciNet  Google Scholar 

  14. Yu. I. Meshcheryakov and G. G. Savenkov, “Oscillations of the plastic wave under high-rate loading,” J. Appl. Mech. Tech. Phys., 42, No. 6, 1023–1028 (2001).

    Article  Google Scholar 

  15. G. F. Sarafanov, “Correlation effects in an ensemble of boundary-value dislocations,” Fiz. Tverd. Tela, 50, No. 10, 1793–1799 (2008).

    Google Scholar 

  16. L. C. Chhabildas and J. R. Asay, “Rise-rime measurements of shock transitions in aluminum, copper, and steel,” J. Appl. Phys., 50, No. 4, 934–941 (1979).

    Article  Google Scholar 

  17. G. G. Savenkov, “Critical stresses in spalling and dynamic rupture of metals,” J. Appl. Mech. Tech. Phys., 46, No. 6, 857–860 (2005).

    Article  ADS  Google Scholar 

  18. Yu. I. Meshcheryakov and A. K. Divakov, “Interference method of recording high-velocity inhomogeneity of particles in elastoplastic loading waves in solids,” Preprint No. 25, Leningrad Department of the Institute of Machine Science, Leningrad (1989).

    Google Scholar 

  19. D. Hudson, Statistics, Geneva (1964).

  20. L. V. Al’tshuler and B. S. Chekin, “Rheology of wave deformation in metals,” Combust., Expl., Shock Waves, No. 5, 660–662 (1983).

    Article  Google Scholar 

  21. V. A. Ogorodnikov, A. A. Sadovoi, E. S. Tyun’kin, and N. M. Chulkov, “Viscosity of aluminum and lead in shockwave experiments,” J. Appl. Mech. Tech. Phys., 36, No. 1, 4–9 (1995).

    Article  ADS  Google Scholar 

  22. G. S. Pisarenko and A. E. Krasovskii, “On the physical theory of the dynamic yield point of crystal materials,” Probl. Prochn., No. 11, 11–14 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Savenkov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 2, pp. 7–15, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savenkov, G.G. Dynamic viscosity and material relaxation time during shock loading. J Appl Mech Tech Phy 51, 148–154 (2010). https://doi.org/10.1007/s10808-010-0023-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-010-0023-0

Key words

Navigation