Skip to main content
Log in

A classification of combinatorial types of discriminantal arrangements

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Manin and Schechtman introduced a family of arrangements of hyperplanes generalizing classical braid arrangements, which they called the discriminantal arrangements. Athanasiadis proved a conjecture by Bayer and Brandt providing a full description of the combinatorics of discriminantal arrangements in the case of very generic arrangements. Libgober and Settepanella described a sufficient geometric condition for given arrangements to be non-very generic in terms of the notion of dependency for a certain arrangement. Settepanella and the author generalized the notion of dependency introducing r-sets and \(K_{\mathbb {T}}\)-vector sets, and provided a sufficient condition for non-very genericity but still not convenient to verify by hand. In this paper, we give a classification of the r-sets, and a more explicit and tractable condition for non-very genericity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

There are no associated data in this paper.

References

  1. Athanasiadis, C.A.: The largest intersection lattice of a discriminantal arrangement. Beitr. Algebra Geom. 40(2), 283–289 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bayer, M.M., Brandt, K.A.: Discriminantal arrangements, fiber polytopes and formality. J. Algebraic Combin. 6(3), 229–246 (1997). https://doi.org/10.1023/A:1008601810383

    Article  MathSciNet  MATH  Google Scholar 

  3. Crapo, H.: The combinatorial theory of structures. In: Matroid Theory (Szeged, 1982). Colloq. Math. Soc. János Bolyai, vol. 40, pp. 107–213. North-Holland, Amsterdam (1985)

  4. Crapo, H., Rota, G.-C.: The resolving bracket. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry: Proceedings of the Curaçao Conference, 13–17 June, 1994, pp. 197–222. Springer, Dordrecht (1995)

  5. Das, P., Palezzato, E., Settepanella, S.: The generalized Sylvester’s and orchard problems via discriminantal arrangement. arXiv:2201.03007 [math.CO]

  6. Falk, M.: A note on discriminantal arrangements. Proc. Amer. Math. Soc. 122(4), 1221–1227 (1994). https://doi.org/10.2307/2161193

    Article  MathSciNet  MATH  Google Scholar 

  7. Felsner, S., Ziegler, G.M.: Zonotopes associated with higher Bruhat orders. Discrete Math. 241, 301–312 (2001). https://doi.org/10.1016/S0012-365X(01)00127-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Kapranov, M.M., Voevodsky, V.A.: Combinatorial-Geometric Aspects of Polycategory Theory: Pasting Schemes and Higher Bruhat Orders (list of Results). In: International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Tologogie Géom. Différentielle Catég. vol. 32, pp. 11–27 (1991)

  9. Kapranov, M.M., Voevodsky, V.A.: The free n-category generated by a cube, oriented matroids and higher Bruhat orders. Funktsional. Anal. Prilozhen. 25(1), 62–65 (1991). https://doi.org/10.1007/BF01090678

    Article  MathSciNet  Google Scholar 

  10. Kapranov, M.M., Voevodsky, V.A.: Braided monoidal \(2\)-categories and Manin–Schechtman higher braid groups. J. Pure Appl. Algebra 92(3), 241–267 (1994). https://doi.org/10.1016/0022-4049(94)90097-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohno, T.: Integrable connections related to Manin and Schechtman’s higher braid groups. Illinois J. Math. 34(2), 476–484 (1990). https://doi.org/10.1215/ijm/1255988273

    Article  MathSciNet  MATH  Google Scholar 

  12. Koizumi, H., Numata, Y., Takemura, A.: On intersection lattices of hyperplane arrangements generated by generic points. Ann. Comb. 16(4), 789–813 (2012). https://doi.org/10.1007/s00026-012-0161-6

  13. Kumar, C.P.A.: On very generic discriminantal arrangements (2020). arXiv:2011.05327 [math.CO]

  14. Lawrence, R.: A Presentation for Manin and Schechtman’s Higher Braid Groups. MSRI Preprint #04129-91

  15. Libgober, A., Settepanella, S.: Strata of discriminantal arrangements. J. Singul. 18, 440–454 (2018). https://doi.org/10.5427/jsing.2018.18w

    Article  MathSciNet  MATH  Google Scholar 

  16. Manin, Y.I., Schechtman, V.V.: Arrangements of hyperplanes, higher braid groups and higher bruhat orders. Adv. Stud. Pure Math. 17, 289–308 (1989). https://doi.org/10.2969/aspm/01710289

    Article  MathSciNet  MATH  Google Scholar 

  17. Numata, Y., Takemura, A.: On computation of the characteristic polynomials of the discriminantal arrangements and the arrangements generated by generic points. In: Harmony of Gröbner Bases and the Modern Industrial Society, World Scientific, pp. 228–252 (2012). https://doi.org/10.1142/9789814383462_0014

  18. Perling, M.: Divisorial cohomology vanishing on toric varieties. Doc. Math. 16, 209–251 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Saito, T., Settepanella, S.: Small examples of discriminantal arrangements associated to non-very generic arrangements. arXiv:2201.03007 [math.CO]

  20. Sawada, S., Settepanella, S., Yamagata, S.: Discriminantal arrangement, \(3\times 3\) minors of Plücker matrix and hypersurfaces in Grassmannian \(Gr(3, n)\). C. R. Math. Acad. Sci. Paris 355(11), 1111–1120 (2017). https://doi.org/10.1016/j.crma.2017.10.011

    Article  MathSciNet  MATH  Google Scholar 

  21. Sawada, S., Settepanella, S., Yamagata, S.: Pappus’s theorem in Grassmannian \(Gr(3,{\mathbb{C}}^n)\). Ars Math. Contemp. 16(1), 257–276 (2019). https://doi.org/10.26493/1855-3974.1619.a03

    Article  MathSciNet  MATH  Google Scholar 

  22. Settepanella, S., Yamagata, S.: On the non-very generic intersections in discriminantal arrangements. To appear in C. R. Math

  23. Settepanella, S., Yamagata, S.: A linear condition for non-very generic discriminantal arrangements. arXiv:2205.04664 [math.CO]

  24. Ziegler, G.M.: Higher Bruhat orders and cyclic hyperplane arrangements. Topology 32(2), 259–279 (1993). https://doi.org/10.1016/0040-9383(93)90019-R

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Anatoly Libgober for useful discussions and for pointing out Corollaries 1 and 2, and Masahiko Yoshinaga for useful discussions. The author also would like to thank referees for many useful comments and suggestions. The author was supported by JSPS Research Fellowship for Young Scientists Grant Number 20J10012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Yamagata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagata, S. A classification of combinatorial types of discriminantal arrangements. J Algebr Comb 57, 1007–1032 (2023). https://doi.org/10.1007/s10801-022-01207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01207-1

Keywords

Mathematics Subject Classification

Navigation