Skip to main content
Log in

Identities and bases in the sylvester and Baxter monoids

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

This paper presents new results on the identities satisfied by the sylvester and Baxter monoids. We show how to embed these monoids, of any rank strictly greater than 2, into a direct product of copies of the corresponding monoid of rank 2. This confirms that all monoids of the same family, of rank greater than or equal to 2, satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the varieties generated by the sylvester and the Baxter monoids have finite axiomatic rank, by giving a finite basis for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adjan, S.I.: Defining relations and algorithmic problems for groups and semigroups. Trudy Mat. Inst. Steklov. 85, 123 (1966)

    MathSciNet  Google Scholar 

  2. Aho, A.V., Ullman, J.D.: Foundations of Computer Science. Computer Science Press, New York, Principles of Computer Science Series (1992)

    MATH  Google Scholar 

  3. Auinger, K., Volkov, M.: Equational theories of endomorphism monoids of categories with a topological flavor (2020). https://doi.org/10.48550/arXiv:2002.01016

  4. Baxter, G.: On fixed points of the composite of commuting functions. Proc. Amer. Math. Soc. 15, 851–855 (1964). https://doi.org/10.2307/2034894

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergman, C.: Universal algebra, Vol. 301 of Pure and Applied Mathematics (Boca Raton), CRC Press, Boca Raton, FL, fundamentals and selected topics (2012)

  6. Bump, D., Schilling, A.: Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, representations and combinatorics. (2017). https://doi.org/10.1142/9876

  7. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in Mathematics, vol. 78. Springer-Verlag, New York-Berlin (1981)

  8. Cain, A.J., Klein, G., Kubat, Ł, Malheiro, A., Okniński, J.: A note on identities in plactic monoids and monoids of upper-triangular tropical matrices (2017). https://doi.org/10.48550/arXiv:1705.04596

  9. Cain, A. J., Malheiro, A.: Identities in plactic, hypoplactic, sylvester, Baxter, and related monoids, Electron. J. Combin. 25(3), 3.30, 19 (2018). https://doi.org/10.37236/6873

  10. Cain, A.J., Malheiro, A.: Crystallizing the hypoplactic monoid: from quasi-Kashiwara operators to the Robinson-Schensted-Knuth-type correspondence for quasi-ribbon tableaux. J. Algebraic Combin. 45(2), 475–524 (2017). https://doi.org/10.1007/s10801-016-0714-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Cain, A.J., Malheiro, A.: Crystals and trees: quasi-Kashiwara operators, monoids of binary trees, and Robinson-Schensted-type correspondences. J. Algebra 502, 347–381 (2018). https://doi.org/10.1016/j.jalgebra.2018.01.036

    Article  MathSciNet  MATH  Google Scholar 

  12. Cain, A.J., Malheiro, A.: Combinatorics of cyclic shifts in plactic, hypoplactic, sylvester, Baxter, and related monoids. J. Algebra 535, 159–224 (2019). https://doi.org/10.1016/j.jalgebra.2019.06.025

    Article  MathSciNet  MATH  Google Scholar 

  13. Cain, A.J., Malheiro, A., Ribeiro, D.: Identities and bases in the hypoplactic monoid. Comm. Algebra 50(1), 146–162 (2022). https://doi.org/10.1080/00927872.2021.1955901

    Article  MathSciNet  MATH  Google Scholar 

  14. Cain, A.J., Johnson, M., Kambites, M., Malheiro, A.: Representations and identities of plactic-like monoids. J. Algebra 606, 819–850 (2022). https://doi.org/10.1016/j.jalgebra.2022.04.033

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y., Hu, X., Kitov, N.V., Luo, Y., Volkov, M.V.: Identities of the Kauffman monoid \({\cal{K} }_3\). Comm. Algebra 48(5), 1956–1968 (2020). https://doi.org/10.1080/00927872.2019.1710164

    Article  MathSciNet  MATH  Google Scholar 

  16. Daviaud, L., Johnson, M., Kambites, M.: Identities in upper triangular tropical matrix semigroups and the bicyclic monoid. J. Algebra 501, 503–525 (2018). https://doi.org/10.1016/j.jalgebra.2017.12.032

    Article  MathSciNet  MATH  Google Scholar 

  17. Duchamp, G., Hivert, F., Thibon, J.-Y.: Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput. 12(5), 671–717 (2002). https://doi.org/10.1142/S0218196702001139

    Article  MathSciNet  MATH  Google Scholar 

  18. Fulton, W.: Young tableaux, Vol. 35 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, (1997), with applications to representation theory and geometry

  19. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–348 (1995). https://doi.org/10.1006/aima.1995.1032

    Article  MathSciNet  MATH  Google Scholar 

  20. Giraudo, S.: Algebraic and combinatorial structures on pairs of twin binary trees. J. Algebra 360, 115–157 (2012). https://doi.org/10.1016/j.jalgebra.2012.03.020

    Article  MathSciNet  MATH  Google Scholar 

  21. Green, J.A.: Polynomial representations of \({\rm GL}_{n}\), augmented Edition, Vol. 830 of Lecture Notes in Mathematics, Springer, Berlin, with an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker (2007)

  22. Han, B.B., Zhang, W.T.: Finite basis problems for stalactic, taiga, sylvester and baxter monoids. J. Algebra Appl. (2022). https://doi.org/10.1142/S0219498823502043

    Article  MATH  Google Scholar 

  23. Higgins, P. M.: Techniques of semigroup theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, with a foreword by G. B. Preston (1992)

  24. Hivert, F., Novelli, J.-C., Thibon, J.-Y.: The algebra of binary search trees. Theoret. Comput. Sci. 339(1), 129–165 (2005). https://doi.org/10.1016/j.tcs.2005.01.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Howie, J.M.: Fundamentals of semigroup theory, Vol. 12 of London Mathematical Society Monographs. New Series, The Clarendon Press, Oxford University Press, New York, oxford Science Publications (1995)

  26. Izhakian, Z.: Tropical plactic algebra, the cloaktic monoid, and semigroup representations. J. Algebra 524, 290–366 (2019). https://doi.org/10.1016/j.jalgebra.2018.12.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Johnson, M., Kambites, M.: Tropical representations and identities of plactic monoids. Trans. Amer. Math. Soc. 374(6), 4423–4447 (2021). https://doi.org/10.1090/tran/8355

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnson, M., Tran, N.M.: Geometry and algorithms for upper triangular tropical matrix identities. J. Algebra 530, 470–507 (2019). https://doi.org/10.1016/j.jalgebra.2019.03.024

    Article  MathSciNet  MATH  Google Scholar 

  29. Kharlampovich, O.G., Sapir, M.V.: Algorithmic problems in varieties. Internat. J. Algebra Comput. 5(4–5), 379–602 (1995). https://doi.org/10.1142/S0218196795000227

    Article  MathSciNet  MATH  Google Scholar 

  30. Kitov, N.V., Volkov, M.V.: Identities of the Kauffman Monoid \({\cal{K}}_4\) and of the Jones Monoid \({\cal{J}}_4\), in: Fields of logic and computation. III, Vol. 12180 of Lecture Notes in Comput. Sci., Springer, Cham, 2020, pp. 156–178. https://doi.org/10.1007/978-3-030-48006-6_12

  31. Knuth, D.E.: Permutations, matrices, and generalized Young tableaux. Pacific J. Math. 34, 709–727 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at \(q=0\). J. Algebraic Combin. 6(4), 339–376 (1997). https://doi.org/10.1023/A:1008673127310

    Article  MathSciNet  MATH  Google Scholar 

  33. Kubat, Ł, Okniński, J.: Identities of the plactic monoid. Semigroup Forum 90(1), 100–112 (2015). https://doi.org/10.1007/s00233-014-9609-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Lascoux, A., Schützenberger, M.-P.: Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B 286(7), A323–A324 (1978)

  35. Lascoux, A., Schützenberger M.-P.: Le monoïde plaxique, In: Noncommutative Structures in Algebra and Geometric Combinatorics (Naples, 1978), Vol. 109 of Quad. “Ricerca Sci.”, CNR, Rome, pp. 129–156, (1981)

  36. Loday, J.-L., Ronco, M.O.: Hopf algebra of the planar binary trees. Adv. Math. 139(2), 293–309 (1998). https://doi.org/10.1006/aima.1998.1759

    Article  MathSciNet  MATH  Google Scholar 

  37. Lothaire, M.: Algebraic combinatorics on words, Vol. 90 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge: a collective work by Jean Berstel. Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski, With a preface by Berstel and Perrin. (2002). https://doi.org/10.1017/CBO9781107326019

  38. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd Edition, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, with contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition [MR1354144] (2015)

  39. Maclagan, D., Sturmfels, B.: Introduction to tropical geometry, Vol. 161 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, (2015). https://doi.org/10.1090/gsm/161

  40. Mal’cev, A.I., Algebraic systems, Die Grundlehren der mathematischen Wissenschaften, Band 192, Springer-Verlag, New York-Heidelberg,: posthumous edition. In: Smirnov, D. (ed.) and M. Taĭclin, Translated from the Russian by B, D. Seckler and A. P. Doohovskoy (1973)

  41. Mashevitzky, G.: On the finite basis problem for left hereditary systems of semigroup identities, in: Semigroups, automata and languages (Porto, 1994), World Sci. Publ., River Edge, NJ, pp. 167–181 (1996)

  42. McKenzie, R.N., McNulty, G.F.,Taylor, W.F.: Algebras, lattices, varieties. Vol. 1, AMS Chelsea Publishing/American Mathematical Society, Providence, RI, 2018, reprint of [MR0883644], (1969). https://doi.org/10.1090/chel/383.H

  43. Novelli, J.-C.: On the hypoplactic monoid, Discrete Math. 217 (1-3) (2000) 315–336, formal power series and algebraic combinatorics (Vienna, 1997). https://doi.org/10.1016/S0012-365X(99)00270-8

  44. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Reading, MA (1994)

    MATH  Google Scholar 

  45. Pastijn, F.: Polyhedral convex cones and the equational theory of the bicyclic semigroup. J. Aust. Math. Soc. 81(1), 63–96 (2006). https://doi.org/10.1017/S1446788700014646

    Article  MathSciNet  MATH  Google Scholar 

  46. Poirier, S., Reutenauer, C.: Algèbres de Hopf de tableaux. Ann. Sci. Math. Québec 19(1), 79–90 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Priez, J.-B.: Lattice of combinatorial Hopf algebras: binary trees with multiplicities, In: Goupil, A., Schaeffer, G. (Eds.), 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) of DMTCS Proceedings, Discrete Mathematics and Theoretical Computer Science, Paris, France, 1137–1148 (2013). https://doi.org/10.46298/dmtcs.2372

  48. Reading, N.: Lattice congruences, fans and Hopf algebras. J. Combin. Theory Ser. A 110(2), 237–273 (2005). https://doi.org/10.1016/j.jcta.2004.11.001

    Article  MathSciNet  MATH  Google Scholar 

  49. Ribeiro, D.: Identities and bases in plactic, hypoplactic, sylvester, and related monoids, Ph.D. thesis, NOVA School of Science and Technology, NOVA University Lisbon (Portugal) (2022). http://hdl.handle.net/10362/134505

  50. Sapir, M.V.: Combinatorial algebra: syntax and semantics, Springer Monographs in Mathematics, Springer, Cham,: with contributions by Victor S. Volkov, Guba and Mikhail V (2014). https://doi.org/10.1007/978-3-319-08031-4

  51. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961). https://doi.org/10.4153/CJM-1961-015-3

    Article  MathSciNet  MATH  Google Scholar 

  52. Schützenberger, M.-P.: La correspondance de Robinson, In: Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lecture Notes in Math., Vol. 579, Springer, Berlin, pp. 59–113 (1977)

  53. Shneerson, L.M.: On the axiomatic rank of varieties generated by a semigroup or monoid with one defining relation. Semigroup Forum 39(1), 17–38 (1989). https://doi.org/10.1007/BF02573281

    Article  MathSciNet  MATH  Google Scholar 

  54. Volkov, M.V.: The finite basis problem for finite semigroups. Sci. Math. Jpn. 53(1), 171–199 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their careful reading of the paper and helpful comments, in particular, for the observations on the varietal join and meet of the varieties generated by the sylvester and #-sylvester monoids, and the observation on the finite basis given for the variety generated by the Baxter monoid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duarte Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is funded by National Funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 amd UIDP/00297/2020 (Center for Mathematics and Applications) and the project PTDC/MAT-PUR/31174/2017. The third author is funded by National Funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the studentship SFRH/BD/138949/2018.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cain, A.J., Malheiro, A. & Ribeiro, D. Identities and bases in the sylvester and Baxter monoids. J Algebr Comb 58, 933–966 (2023). https://doi.org/10.1007/s10801-022-01202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01202-6

Keywords

Mathematics Subject Classification

Navigation