Skip to main content
Log in

Preparation of insoluble Ti/IrO2/MoS2 anodes by electrodeposition and its application in electrolytic copper foil

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Dimensionally stable anodes (DSAs) offer great advantages as insoluble anodes for electrolytic copper foils. Titanium-based iridium dioxide electrode has low oxygen evolution potential, which can reduce energy consumption in industrial production. In view of the excellent oxygen evolution performance of MoS2 in alkaline environment, molybdenum disulfide is considered to be loaded on Ti/IrO2 electrode by electrodeposition to improve the oxygen evolution efficiency of electrolytic copper foil anode in copper sulfate. The structure of the composite anode was characterized using surface analysis techniques such as XRD and SEM. The results manifested that the surface of the anode was shallower and had fewer pits, which effectively improved the microscopic morphology of the Ti/IrO2/MoS2. The oxygen evolution potential of Ti/IrO2/MoS2 composite anode determined by oxygen evolution polarization curve (LSV) was 1.25 V, which was lower than that of commercially available Ti/IrO2-Ta2O5 anodes and had the largest oxygen evolution active surface area. In addition, the experiment with the electrolytic copper foil using the Ti/IrO2/MoS2 anode revealed that the surface flatness of the copper foil was high and the average grain size was 32 nm, which further confirmed that the application of the Ti/IrO2/MoS2 anode in the electrolytic copper foil area can lessen the slot voltage and save cost.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Lai ZQ, Wang C, Huang YZ et al (2020) Temperature-dependent inhibition of PEG in acid copper plating: theoretical analysis and experiment evidence. Mater Today Commun 24:100973. https://doi.org/10.1016/j.mtcomm.2020.100973

    Article  CAS  Google Scholar 

  2. Wang H, Hu JH, Li KZ et al (2021) Effect of additives on the direct electrodeposition of copper from acid solution containing 20 g/L copper (II). Int J Electrochem Sci. https://doi.org/10.20964/2021.01.40

    Article  Google Scholar 

  3. Yu W, Lin C, Li Q et al (2021) A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current. J Appl Electrochem 51:489–501. https://doi.org/10.1007/s10800-020-01509-x

    Article  CAS  Google Scholar 

  4. Msindo ZS, Sibanda V, Potgieter JH et al (2010) Electrochemical and physical characterisation of lead-based anodes in comparison to Ti-(70%) IrO2/(30%) Ta2O5 dimensionally stable anodes for use in copper electrowinning. J Appl Electrochem 40:691–699. https://doi.org/10.1007/s10800-009-0044-7

    Article  CAS  Google Scholar 

  5. Hayfield PCS (1998) Development of the noble metal/oxide coated titanium electrode. Platin Met Rev 42(2):46–55

    Article  CAS  Google Scholar 

  6. Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45(15–16):2377–2385. https://doi.org/10.1016/S0013-4686(00)00338-8

    Article  CAS  Google Scholar 

  7. Jin HC, Zhang Y, Zhang XJ et al (2021) High-performance Ti/IrO2-RhOx-Ta2O5 electrodes for polarity reversal applications. Ind Eng Chem Res 60(11):4310–4320. https://doi.org/10.1021/acs.iecr.0c05990

    Article  CAS  Google Scholar 

  8. Dondapati JS, Thiruppathi AR, Salverda A (2021) Comparison of Pt and IrO2-Ta2O5/Ti as a counter electrode in acidic media. Electrochem Commun 124:106946. https://doi.org/10.1016/j.elecom.2021.106946

    Article  CAS  Google Scholar 

  9. Kawaguchi K, Morimitsu M (2020) Reaction selectivity of IrO2-based nano/amorphous hybrid oxide-coated titanium anodes in acidic aqueous solutions: oxygen evolution and lead oxide deposition. J Electrochem Soc 167(13):133503. https://doi.org/10.1149/1945-7111/abb7e8

    Article  CAS  Google Scholar 

  10. Quinson J (2022) Iridium and IrOx nanoparticles: an overview and review of syntheses and applications. Adv Colloid Interface Sci 303:102643. https://doi.org/10.1016/j.cis.2022.102643

    Article  CAS  PubMed  Google Scholar 

  11. Mehdipour M, Tabaian SH, Firoozi S et al (2021) Electrochemical evaluation of IrO2-Ta2O5-MWCNT-coated anodes with different pretreatments of titanium substrate. J Iran Chem Soc 18:233–243. https://doi.org/10.1007/s13738-020-02020-y

    Article  CAS  Google Scholar 

  12. Zhang YH, Jiang WQ, Dong H et al (2021) Study on the electrochemical removal mechanism of oxytetracycline by a Ti/IrO2-Ta2O5 plate. Int J Environ Res Public Health 18(4):1708. https://doi.org/10.3390/ijerph18041708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang N, Wang YC, Zhao Ql et al (2020) Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water. Environ Pollut 259:113801. https://doi.org/10.1016/j.envpol.2019.113801

    Article  CAS  PubMed  Google Scholar 

  14. Wang JR, Ba XC, Zhao ZK et al (2021) Environmentally friendly fabrication of Ti/RuO2-IrO2-SnO2-Sb2O5 anode with in situ incorporation of reduced TiO2 interlayer. J Electrochem Soc 168(5):053502. https://doi.org/10.1149/1945-7111/ac0017

    Article  CAS  Google Scholar 

  15. Wu DD, Wu X, Zhang Yl et al (2020) A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode. Electrochim Acta 338:135793. https://doi.org/10.1016/j.electacta.2020.135793

    Article  CAS  Google Scholar 

  16. Herrada RA, Rodil SE, Bustos E et al (2021) Characterization of Ti electrodes electrophoretically coated with IrO2-Ta2O5 films with different Ir: Ta molar ratios. J Alloys Compd 862:158015. https://doi.org/10.1016/j.jallcom.2020.158015

    Article  CAS  Google Scholar 

  17. Touni A, Grammenos OA, Banti A et al (2021) Iridium oxide-nickel-coated titanium anodes for the oxygen evolution reaction. Electrochim Acta 390:138866. https://doi.org/10.1016/j.electacta.2021.138866

    Article  CAS  Google Scholar 

  18. Zhang YL, Cao MM, Lv H et al (2018) Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm2 for sludge dewatering electrolysers. Electrochim Acta 265:507–513. https://doi.org/10.1016/j.electacta.2018.01.190

    Article  CAS  Google Scholar 

  19. Fan YZ, Cheng X (2016) Porous IrO2-Ta2O5 coating modified with carbon nanotubes f-or oxygen evolution reaction. J Electrochem Soc 163(8):E209. https://doi.org/10.1149/2.0021608jes

    Article  CAS  Google Scholar 

  20. Yan ZW, Zhang HM, Feng ZQ (2017) Promotion of in situ TiNx interlayer on morphology and electrochemical properties of titanium based IrO2-Ta2O5 coated anode. J Alloys Compd 708:1081–1088. https://doi.org/10.1016/j.jallcom.2017.03.117

    Article  CAS  Google Scholar 

  21. Xin YL (2021) Graphene-modified IrO2-Ta2O5 coated titanium anodes for the application of impressed current cathodic protection. Int J Electrochem Sci 16:211056. https://doi.org/10.20964/2021.10.47

    Article  CAS  Google Scholar 

  22. Dai W, Li X, Wu L et al (2020) Structure and properties of molybdenum-disulfide/amorphous carbon composited coatings deposited by co-sputtering method. Diam Relat Mater 101:107643. https://doi.org/10.1016/j.diamond.2019.107643

    Article  ADS  CAS  Google Scholar 

  23. Wei ST, Cui XQ, Xu Y et al (2018) Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.8b01840

    Article  Google Scholar 

  24. Jaramillo TF, Jørgensen KP, Bonde J (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Wu JJ, Liu MJ, Chatterjee K et al (2016) Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv Mater Interfaces 3(9):1500669. https://doi.org/10.1002/admi.201500669

    Article  CAS  Google Scholar 

  26. Yamanaka K (1989) Anodically Electrodeposited Iridium Oxide Films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn J Appl Phys 28(4):632. https://doi.org/10.1143/JJAP.28.632/meta

    Article  ADS  CAS  Google Scholar 

  27. Hu JM, Zhang JQ, Cao CN et al (2003) Thermolytic formation and microstructure of IrO2+Ta2O5 mixed oxide anodes from chloride precursors. Thermochim Acta 403(2):257–266. https://doi.org/10.1016/S0040-6031(03)00061-3

    Article  CAS  Google Scholar 

  28. Ding S, He P, Feng W et al (2016) Novel molybdenum disulfide nanosheets-decorated polyaniline: preparation, characterization and enhanced electrocatalytic activity for hydrogen evolution reaction. J Phys Chem Solids 91:41–47. https://doi.org/10.1016/j.jpcs.2015.12.009

    Article  ADS  CAS  Google Scholar 

  29. Liu S, Zhang X, Shao H et al (2012) Preparation of MoS2 nanofibers by electrospinning. Mater Lett 73:223–225. https://doi.org/10.1016/j.matlet.2012.01.024

    Article  CAS  Google Scholar 

  30. Silva LMD, Franco DV, Faria LAD (2004) Surface, kinetics and electrocatalytic properties of Ti/(IrO2+Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production. Electrochim Acta 49(22–23):3977–3988. https://doi.org/10.1016/j.electacta.2003.11.039

    Article  CAS  Google Scholar 

  31. Claudel F, Dubau L, Berthomé G et al (2019) Degradation mechanisms of oxygen evolution reaction electrocatalysts: a combined identical-location transmission electron microscopyand X-ray photoelectron spectroscopy study. ACS Catal 9(5):4688–4698. https://doi.org/10.1021/acscatal.9b00280

    Article  CAS  Google Scholar 

  32. Moulder JF, Stickle WF, Sobol PE et al (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie

    Google Scholar 

  33. Elezović NR, Zabinski P, Lačnjevac UČ et al (2021) Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction. J Solid State Electrochem 25:351–363. https://doi.org/10.1007/s10008-020-04816-7

    Article  CAS  Google Scholar 

  34. Blakemore JD, Schley ND, Kushner-Lenhoff MN et al (2012) Comparison of amorphous iridium water-oxidation electrocatalysts prepared from soluble precursors. Inorg Chem 51(14):7749–7763. https://doi.org/10.1021/ic300764f

    Article  CAS  PubMed  Google Scholar 

  35. Krysa J, Maixner J, Mraz R et al (1998) Effect of coating thickness on the properties of IrO2-Ta2O5 anodes. J Appl Electrochem 28:369–372. https://doi.org/10.1023/A:1003284204458

    Article  CAS  Google Scholar 

  36. Chen J, Cui P, Zhao G et al (2019) Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew Chem Int Ed Engl 58(36):12540–12544. https://doi.org/10.1002/anie.201907017

    Article  CAS  PubMed  Google Scholar 

  37. Gao J, Xu CQ, Hung SF et al (2019) Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J Am Chem Soc 141(7):3014–3023. https://doi.org/10.1021/jacs.8b11456

    Article  CAS  PubMed  Google Scholar 

  38. Lim J, Park D, Jeon SS et al (2017) Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv Funct Mater 28(4):1704796. https://doi.org/10.1002/adfm.201704796

    Article  CAS  Google Scholar 

  39. Lettenmeier P, Wang L, Golla-Schindler U et al (2016) Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective pro-cedure. Angew Chem Int Ed 55(2):742–746. https://doi.org/10.1002/anie.201507626

    Article  CAS  Google Scholar 

  40. Zhou T, Zaman WQ, Sun W et al (2018) Cultivating crystal lattice distortion in IrO2 via coupling with MnO2 to boost the oxygen evolution reaction with high intrinsic activity. Chem Commun 54(39):4959–4962. https://doi.org/10.1039/C8CC02008F

    Article  CAS  Google Scholar 

  41. Badam R, Hara M, Huang HH et al (2018) Synthesis and electrochemical analysis of novel IrO2 nanoparticle catalysts supported on carbon nanotube for oxygen evolution reaction. Int J Hydrog Energy 43(39):18095–18104. https://doi.org/10.1016/j.ijhydene.2018.08.034

    Article  CAS  Google Scholar 

  42. da Silva GC, Fernandes MR, Ticianelli EA (2018) Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions. ACS Catal 8(3):2081–2092. https://doi.org/10.1021/acscatal.7b03429

    Article  CAS  Google Scholar 

  43. Wen X, Bai L, Li M et al (2018) Ultrafine iridium oxide supported on carbon nanotubes for effi-cient catalysis of oxygen evolution and oxygen reduction reactions. Mater Today Energy 10:153–160. https://doi.org/10.1016/j.mtener.2018.09.002

    Article  ADS  Google Scholar 

  44. Kundu MK, Mishra R, Bhowmik T et al (2020) Three-dimensional hierarchically porous iridium oxide-nitrogen doped carbon hybrid: an efficient bifunctional catalyst for oxygen evolution and hydrogen evolution reaction in acid. Int J Hydrog Energy 45(11):6036–6046. https://doi.org/10.1016/j.ijhydene.2019.12.186

    Article  CAS  Google Scholar 

  45. Papaderakis A, Matouli I, Spyridou ON et al (2020) Ternary IrO2-Pt-Ni deposits prepared by galvanic replacement as bifunctional oxygen catalysts. J Electroanal Chem 877:114499. https://doi.org/10.1016/j.jelechem.2020.114499

    Article  CAS  Google Scholar 

  46. Wang T, Li Z, Jang H et al (2023) Interface engineering of oxygen vacancy-enriched Ru/RuO2-Co3O4 heterojunction for efficient oxygen evolution reaction in acidic media. ACS Sustain Chem Eng 11(13):5155–5163. https://doi.org/10.1021/acssuschemeng.2c07322

    Article  CAS  Google Scholar 

  47. Yu Y, Jin H, Li Q et al (2021) Pseudocapacitive Ti/RuO2-IrO2-RhOx electrodes with high bipolar stability for phenol degradation. Sep Purif Technol 263:118395. https://doi.org/10.1016/j.seppur.2021.118395

    Article  CAS  Google Scholar 

  48. Liu B, Wang S, Wang C et al (2020) Electrochemical behavior and corrosion resistance of IrO2-ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution. Int J Miner Metall Mater 27:264–273. https://doi.org/10.1007/s12613-019-1847-0

    Article  CAS  Google Scholar 

  49. Lee H, Tsai ST, Wu PH et al (2019) Influence of additives on electroplated copper films and their solder joints. Mater Charact 147:57–63. https://doi.org/10.1016/j.matchar.2018.10.029

    Article  CAS  Google Scholar 

  50. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978. https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Province Postgraduate Research and Practice Innovation Program (Grant numbers SJCX23_1480, SJCX23_1466) and preparation of conductive bimetallic MOFs composite film by electrodeposition and its electrochemical energy storage (Grant number 22378029).

Author information

Authors and Affiliations

Authors

Contributions

XB wrote the main manuscript text and prepared all figures. CL, YZ, SW and WW directed the writing of the whole thesis. NM, SJ and ZC provided financial support for the project.

Corresponding author

Correspondence to Zhidong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Liu, C., Zhang, Y. et al. Preparation of insoluble Ti/IrO2/MoS2 anodes by electrodeposition and its application in electrolytic copper foil. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02085-0

Keywords

Navigation