Skip to main content
Log in

Green synthesis of Ni-doped nipa palm shell-derived carbon aerogel for storage energy, electrochemical sensing, and oil adsorption

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The development of the industry has increased the demand for energy storage, making the provision of energy storage devices essential. The supercapacitor is one of the potential energy storage devices, and carbon aerogel (CA) is a promising candidate for supercapacitor electrode fabrication. Ni-doped nipa palm shell-derived CA (Ni-NS-CA) was used to fabricate the electrode for supercapacitors to save production costs and utilize biomass wastes. Ni-NS-CA was synthesized via a three-step process: Hydrogel making through cross-linking (SA, Ni2+), freeze-drying, and pyrolysis. The characteristics of Ni-NS-CA are analyzed using a scanning electron microscope, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, and Nitrogen adsorption–desorption isotherm 77 K. The electrochemical properties of Ni-NS-CA was analyzed via cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. With stable energy storage results (104.15 F g−1) and the electrochemical system based on Ni-NS-CA extends its application to Hg2+ sensing. Moreover, Ni-NS-CA was a potential material to solve oil spills, which has an oil adsorption capacity of 31.24 g g−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tarhan C, Çil MA (2021) A study on hydrogen, the clean energy of the future: hydrogen storage methods. J Energy Storage 40:102676. https://doi.org/10.1016/j.est.2021.102676

    Article  Google Scholar 

  2. Shaqsi AL, Sopian AZ, Al-Hinai K A (2020) Review of energy storage services, applications, limitations, and benefits. Energy Rep 6:288–306. https://doi.org/10.1016/j.egyr.2020.07.028

    Article  Google Scholar 

  3. Mohr M, Peters JF, Baumann M, Weil M (2020) Toward a cell-chemistry specific life cycle assessment of lithium‐ion Battery recycling processes. J Ind Ecol 24:1310–1322. https://doi.org/10.1111/jiec.13021

    Article  CAS  Google Scholar 

  4. Quan J, Zhao S, Song D et al (2022) Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies. Sci Total Environ 819:153105. https://doi.org/10.1016/j.scitotenv.2022.153105

    Article  CAS  PubMed  Google Scholar 

  5. Mathis TS, Kurra N, Wang X et al (2019) Energy Storage Data Reporting in Perspective—Guidelines for interpreting the performance of Electrochemical Energy Storage Systems. Adv Energy Mater 9:1902007. https://doi.org/10.1002/aenm.201902007

    Article  CAS  Google Scholar 

  6. Zeng F-Y, Sui Z-Y, Liu S et al (2018) Nitrogen-doped carbon aerogels with high surface area for supercapacitors and gas adsorption. Mater Today Commun 16:1–7. https://doi.org/10.1016/j.mtcomm.2018.03.015

    Article  CAS  Google Scholar 

  7. Forouzandeh P, Kumaravel V, Pillai SC (2020) Electrode materials for supercapacitors: a review of recent advances. Catalysts 10:969. https://doi.org/10.3390/catal10090969

    Article  CAS  Google Scholar 

  8. Taer E, Apriwandi A, Agustino A et al (2022) Porous hollow biomass-based carbon nanofiber/nanosheet for high‐performance supercapacitor. Int J Energy Res 46:1467–1480. https://doi.org/10.1002/er.7262

    Article  CAS  Google Scholar 

  9. Li H, Qi C, Tao Y et al (2019) Quantifying the Volumetric Performance Metrics of Supercapacitors. Adv Energy Mater 9:1900079. https://doi.org/10.1002/aenm.201900079

    Article  CAS  Google Scholar 

  10. Hassan MF, Sabri MA, Fazal H et al (2020) Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. J Anal Appl Pyrolysis 145:104715. https://doi.org/10.1016/j.jaap.2019.104715

    Article  CAS  Google Scholar 

  11. Li F, Xie L, Sun G et al (2019) Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater 279:293–315. https://doi.org/10.1016/j.micromeso.2018.12.007

    Article  CAS  Google Scholar 

  12. Wilson SMW, Al-Enzi F, Gabriel VA, Tezel FH (2021) Effect of pore size and heterogeneous surface on the adsorption of CO2, N2, O2, and ar on carbon aerogel, RF aerogel, and activated carbons. Microporous Mesoporous Mater 322:111089. https://doi.org/10.1016/j.micromeso.2021.111089

    Article  CAS  Google Scholar 

  13. Evelyn S, Andrio D et al (2022) Nypa fruticans Frond Waste for pure cellulose utilizing sulphur-free and totally chlorine-free processes. Molecules 27:5662. https://doi.org/10.3390/molecules27175662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi H-J, Naznin M, Alam MB et al (2022) Optimization of the extraction conditions of Nypa fruticans Wurmb. Using response surface methodology and artificial neural network. Food Chem 381:132086. https://doi.org/10.1016/j.foodchem.2022.132086

    Article  CAS  PubMed  Google Scholar 

  15. Baibars IO, Abd El-Moghny MG, El-Deab MS (2022) Boosted electrolytic hydrogen production at tailor-tuned nano-dendritic Ni-doped Co foam-like catalyst. Electrochim Acta 410:139992. https://doi.org/10.1016/j.electacta.2022.139992

    Article  CAS  Google Scholar 

  16. Muniyappan D, Ramanathan M, Ramanathan A et al (2023) Sustainable valorization of waste keyboard keys via microwave assisted pyrolysis over Fe-Ni doped green catalyst towards clean fuel production. Energy Sources A 45:1842–1855. https://doi.org/10.1080/15567036.2023.2182845

    Article  CAS  Google Scholar 

  17. Revathi R, Sukumar M, Kumar A et al (2023) Facile synthesis of Ni2 + doped MgFe2O4 spinel nanoparticles: structural, optical, magnetic, and Dielectric Behavior. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02820-8

    Article  Google Scholar 

  18. Rathod SM, Gaikwad SV, Gore SK et al (2023) Ni–Ag ferrites synthesized by sol gel route using aloe vera extract as a solvent: enhancement in structural, dielectric, magnetic and optical properties. Phys B Condens Matter 661:414944. https://doi.org/10.1016/j.physb.2023.414944

    Article  CAS  Google Scholar 

  19. Al-Enizi AM, Ubaidullah M, Ahmed J et al (2020) Copper nickel@reduced graphene oxide nanocomposite as bifunctional electro-catalyst for excellent oxygen evolution and oxygen reduction reactions. Mater Lett 260:126969. https://doi.org/10.1016/j.matlet.2019.126969

    Article  CAS  Google Scholar 

  20. Ubaidullah M, Ahmed J, Ahamad T et al (2020) Hydrothermal synthesis of novel nickel oxide@nitrogenous mesoporous carbon nanocomposite using costless smoked cigarette filter for high performance supercapacitor. Mater Lett 266:127492. https://doi.org/10.1016/j.matlet.2020.127492

    Article  CAS  Google Scholar 

  21. Zhao Y, An H, Dong G et al (2020) Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism. Chem Eng J 388:124371. https://doi.org/10.1016/j.cej.2020.124371

    Article  CAS  Google Scholar 

  22. Shchukin VM, Zhigilei ES, Erina AA et al (2020) Validation of an ICP-MS method for the determination of Mercury, lead, Cadmium, and Arsenic in Medicinal plants and related drug preparations. Pharm Chem J 54:968–976. https://doi.org/10.1007/s11094-020-02306-8

    Article  CAS  Google Scholar 

  23. Herrero Fernández Z, Estevez Álvarez JR, Montero Álvarez A et al (2021) Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS. Food Addit Contaminants: Part B 14:59–65. https://doi.org/10.1080/19393210.2020.1870576

    Article  CAS  Google Scholar 

  24. Minh Tu P, Nam Phat L, Hoang Lin T et al (2022) Effects of Activation Conditions on the Characteristics, Adsorption Capacity, and Energy Sorage of Carbon Aerogel from Watermelon Rind. ChemNanoMat. https://doi.org/10.1002/cnma.202200426

    Article  Google Scholar 

  25. Huyen NTM, Trang PTT, Dat NM, Hieu NH (2017) Synthesis of chitosan/graphene oxide nanocomposites for methylene blue adsorption. AIP Conf Proc 1878:020013

    Article  Google Scholar 

  26. Trinh TTPNX, Quang DT, Tu TH et al (2019) Fabrication, characterization, and adsorption capacity for cadmium ions of graphene aerogels. Synth Met 247:116–123. https://doi.org/10.1016/j.synthmet.2018.11.020

    Article  CAS  Google Scholar 

  27. Wang J, Chen Z, Den G et al (2022) Efficient and recyclable sericin-derived carbon aerogel for oils and organic solvents adsorption. Chemosphere 301:134745. https://doi.org/10.1016/j.chemosphere.2022.134745

    Article  CAS  PubMed  Google Scholar 

  28. Tu PM, Vy DNC, Ngan LT et al (2023) Superhydrophobic banana stem–derived carbon aerogel for oil and organic adsorptions and energy storage. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-04176-y

    Article  Google Scholar 

  29. Wang H, Gong Y, Wang Y (2014) Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Adv 4:45753–45759. https://doi.org/10.1039/C4RA08446B

    Article  CAS  Google Scholar 

  30. Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  CAS  PubMed  Google Scholar 

  31. Kumar Singh R, Ruj B, Jana A et al (2018) Pyrolysis of three different categories of automotive tyre wastes: product yield analysis and characterization. J Anal Appl Pyrolysis 135:379–389. https://doi.org/10.1016/j.jaap.2018.08.011

    Article  CAS  Google Scholar 

  32. Fonseca BCdaS, Araújo LS, da Pinheiro B S, et al (2022) Bio-based Carbon electrochemically decorated with Cu nanoparticles: Green Synthesis and Electrochemical Performance. Mater Res. https://doi.org/10.1590/1980-5373-MR-2022-0143

    Article  Google Scholar 

  33. Le T-H, Kim Y, Yoon H (2017) Electrical and Electrochemical properties of conducting polymers. Polymers 9:150. https://doi.org/10.3390/polym9040150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanko M, Švorc Ľ, Planková A, Mikuš P (2019) Overview and recent advances in electrochemical sensing of glutathione – a review. Anal Chim Acta 1062:1–27. https://doi.org/10.1016/j.aca.2019.02.052

    Article  CAS  PubMed  Google Scholar 

  35. Zhuo H, Hu Y, Chen Z et al (2019) A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J Mater Chem A Mater 7:8092–8100. https://doi.org/10.1039/c9ta00596j

    Article  CAS  Google Scholar 

  36. Zhang J, Li J (2022) The Oxygen Vacancy defect of ZnO/NiO nanomaterials improves Photocatalytic Performance and Ammonia sensing performance. Nanomaterials 12:433. https://doi.org/10.3390/nano12030433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lv N, Wang X, Peng S et al (2018) Study of the kinetics and equilibrium of the adsorption of oils onto hydrophobic jute fiber modified via the sol–gel method. Int J Environ Res Public Health 15:969. https://doi.org/10.3390/ijerph15050969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H, Sun J, Zhang Y et al (2021) Preparation of hydrophobic carbon aerogel using cellulose extracted from luffa sponge for adsorption of diesel oil. Ceram Int 47:33827–33834. https://doi.org/10.1016/j.ceramint.2021.08.294

    Article  CAS  Google Scholar 

  39. Lin TH, Phat LN, Tu PM et al (2023) Recycled polyethylene terephthalate fibers aerogels modified with Graphene Oxide for Adsorption of Methylene Blue and coated with polydimethylsiloxane tetraethyl orthosilicate for oil removal. J Polym Environ 31:648–663. https://doi.org/10.1007/s10924-022-02607-x

    Article  CAS  Google Scholar 

  40. Li S, Feng R, Li M et al (2020) Needle-like CoO nanowire composites with NiO nanosheets on carbon cloth for hybrid flexible supercapacitors and overall water splitting electrodes. RSC Adv 10:37489–37499. https://doi.org/10.1039/D0RA07307E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong Y, Zhang M, Cao G (2015) Chemically anchored NiO x –carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity. RSC Adv 5:26521–26529. https://doi.org/10.1039/C5RA01518A

    Article  CAS  Google Scholar 

  42. Lam CV, Vy DNC, Duyen NHK et al (2023) Zinc oxide-doped carbon aerogel derived from bagasse cellulose/sodium alginate/zinc nitrate composite for dye adsorption, storage energy and electrochemical sensing. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.7536

    Article  Google Scholar 

  43. Barhoum A, Favre T, Sayegh S et al (2021) 3D self-supported Nitrogen-Doped Carbon Nanofiber Electrodes Incorporated Co/CoOx nanoparticles: application to dyes degradation by Electro-Fenton-based process. Nanomaterials 11:2686. https://doi.org/10.3390/nano11102686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin G, Wang Q, Yang X et al (2020) Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC Adv 10:17768–17776. https://doi.org/10.1039/d0ra02398a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu L, Sun X, Li W et al (2018) Electrochemical hydrodechlorination of perchloroethylene in groundwater on a Ni-doped graphene composite cathode driven by a microbial fuel cell. RSC Adv 8:36142–36149. https://doi.org/10.1039/C8RA06951D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jia M, Choi C, Wu T-S et al (2018) Carbon-supported Ni nanoparticles for efficient CO 2 electroreduction. Chem Sci 9:8775–8780. https://doi.org/10.1039/C8SC03732A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lazzari LK, Perondi D, Zampieri VB et al (2019) Cellulose/biochar aerogels with excellent mechanical and thermal insulation properties. Cellulose 26:9071–9083. https://doi.org/10.1007/s10570-019-02696-3

    Article  CAS  Google Scholar 

  48. Thai QB, Nguyen ST, Ho DK et al (2020) Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. Carbohydr Polym 228:115365. https://doi.org/10.1016/j.carbpol.2019.115365

    Article  CAS  PubMed  Google Scholar 

  49. Sudhasree S, Shakila Banu A, Brindha P, Kurian GA (2014) Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol Environ Chem 96:743–754. https://doi.org/10.1080/02772248.2014.923148

    Article  CAS  Google Scholar 

  50. Kurji B, Abbas A, Marshes Research Center I (2022) Comparative study of Textural properties for various silica by Nitrogen Adsorption-desorption technique. Egypt J Chem 0:0–0. https://doi.org/10.21608/ejchem.2022.125169.5568

    Article  Google Scholar 

  51. De Luna P, Quintero-Bermudez R, Dinh C-T et al (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110. https://doi.org/10.1038/s41929-017-0018-9

    Article  CAS  Google Scholar 

  52. Malkova AN, Sipyagina NA, Gozhikova IO et al (2019) Electrochemical Properties of Carbon Aerogel Electrodes: dependence on synthesis temperature. Molecules 24:3847. https://doi.org/10.3390/molecules24213847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang YL, Sun C, Tang ZS (2019) High specific capacitance and high energy density supercapacitor electrodes enabled by porous carbon with multilevel pores and self-doped heteroatoms derived from Chinese date. Diam Relat Mater 97:107455. https://doi.org/10.1016/j.diamond.2019.107455

    Article  CAS  Google Scholar 

  54. Lee YJ, Jung JC, Park S et al (2010) Preparation and characterization of metal-doped carbon aerogel for supercapacitor. Curr Appl Phys 10:947–951. https://doi.org/10.1016/j.cap.2009.11.078

    Article  Google Scholar 

  55. Wang W, Li K, Song G et al (2022) Activated Carbon Aerogel as an electrode with high specific capacitance for Capacitive Deionization. Processes 10:2330. https://doi.org/10.3390/pr10112330

    Article  CAS  Google Scholar 

  56. Li X, Li M, Shi Q et al (2022) Exhausted cr(VI) Sensing/Removal aerogels are recycled for Water Purification and Solar-Thermal Energy Generation. Small 18:2201949. https://doi.org/10.1002/smll.202201949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Ho Chi Minh City University of Technology (HCMUT) under grant number SVOISP-2022-KTHH – 124. We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

CVL and PMT wrote the main manuscript. PMT and DNCV did experimental. All authors reviewed the manuscript. During the editing process, some experiments and results (BET, Raman results) were re-done, so MTP was considered the first author. In addition, all authors agreed to change the corresponding to PMT.

Corresponding author

Correspondence to Phan Minh Tu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phong, M.T., Lam, C.V., Xuan, N.T.T. et al. Green synthesis of Ni-doped nipa palm shell-derived carbon aerogel for storage energy, electrochemical sensing, and oil adsorption. J Appl Electrochem 54, 1333–1348 (2024). https://doi.org/10.1007/s10800-023-02037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02037-0

Keywords

Navigation