Skip to main content
Log in

Chlorophyll interpolated nafion-membrane for flexible supercapacitor with methanol and ethanol oxidation reaction

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper delineates the design and fabrication of Nafion and Chlorophyll-Nafion membranes in originating the flexible supercapacitors and direct alcoholic fuel cells. Herein, the procedure for the extraction of Chlorophyll from the plant leaves is demonstrated. An advanced flexible membrane of Nafion-Chlorophyll is synthesized by a facile synthesis procedure. Here, we examine the Nafion-Chlorophyll membrane as a supercapacitor and its performance is enhanced in the absence of light using three-electrode setup. The chlorophyll intercalated membrane electrodes depict a specific capacitance of 0.237 \(\mu F\) \({cm^{-2}}\) when the light is just on from the dark and decreased to 0.15 \(\mu F\) \({cm^{-2}}\) after 60 min of light exposure. Moreover, the membrane electrode also exhibits capacitive retention of 89.04% after 1000 cycles. Furthermore, the excellent efficiency of the Nafion-Chlorophyll membrane is observed in methanol and ethanol oxidation reactions (MOR and EOR) along with the current density of 10 and 9.43 \(\mu A\) \({cm^{-2}}\) respectively. Thus, the fabricated flexible chlorophyll membrane shows huge proficiency in portable and flexible energy storage platforms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

Not applicable

References

  1. Choi NS, Chen Z, Freunberger SA et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024

    Article  CAS  Google Scholar 

  2. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  PubMed  Google Scholar 

  3. Dusastre V (2010) Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group. World Scientific, Singapore

    Book  Google Scholar 

  4. Reddy ALM, Gowda SR, Shaijumon MM et al (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24(37):5045–5064

    Article  CAS  Google Scholar 

  5. Wang H, Dai H (2013) Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev 42(7):3088–3113

    Article  CAS  PubMed  Google Scholar 

  6. Askari MB, Salarizadeh P (2020) Binary nickel ferrite oxide (nife2o4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. Int J Hydrogen Energy 45(51):27482–27491

    Article  CAS  Google Scholar 

  7. Guo H, Xu M, Yue L et al (2019) A novel ultrastable and high-performance electrode material for asymmetric supercapacitors based on zif-9@ polyaniline. Adv Mater Interfaces 6(24):1901571

    Article  CAS  Google Scholar 

  8. Wei J, Li X, Xue H et al (2018) Hollow structural transition metal oxide for advanced supercapacitors. Adv Mater Interfaces 5(9):1701509

    Article  Google Scholar 

  9. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  CAS  Google Scholar 

  10. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

    Article  CAS  PubMed  Google Scholar 

  11. Mondal M, Goswami DK, Bhattacharyya TK (2023) High performing asymmetric supercapacitor fabricated by defect induced cathodic mnv2o7 and biowaste derive anodic activated carbon. Journal of Energy Storage 57:106177

    Article  Google Scholar 

  12. Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater 19(11):1151–1163

    Article  CAS  PubMed  Google Scholar 

  13. Mathis TS, Kurra N, Wang X et al (2019) Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater 9(39):1902007

    Article  CAS  Google Scholar 

  14. An L, Zhao T (2011) Performance of an alkaline-acid direct ethanol fuel cell. Int J Hydrogen Energy 36(16):9994–9999

    Article  CAS  Google Scholar 

  15. Tiwari JN, Tiwari RN, Singh G et al (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2(5):553–578

    Article  CAS  Google Scholar 

  16. Wu S, Liu J, Tian Z et al (2015) Highly dispersed ultrafine pt nanoparticles on reduced graphene oxide nanosheets: in situ sacrificial template synthesis and superior electrocatalytic performance for methanol oxidation. ACS Appl Mater Interfaces 7(41):22935–22940

    Article  CAS  PubMed  Google Scholar 

  17. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185(1):3–27

    Article  CAS  Google Scholar 

  18. Kreuer K (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39

    Article  CAS  Google Scholar 

  19. Savadogo O (1998) Emerging membranes for electrochemical systems:(i) solid polymer electrolyte membranes for fuel cell systems. ChemInform 29(47):1–1

    Article  Google Scholar 

  20. Carretta N, Tricoli V, Picchioni F (2000) Ionomeric membranes based on partially sulfonated poly (styrene): synthesis, proton conduction and methanol permeation. J Membr Sci 166(2):189–197

    Article  CAS  Google Scholar 

  21. Choi WC, Kim JD, Woo SI (2001) Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell. J Power Sources 96(2):411–414

    Article  CAS  Google Scholar 

  22. Li L, Zhang J, Wang Y (2003) Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226(1–2):159–167

    Article  CAS  Google Scholar 

  23. Ma Z, Cheng P, Zhao T (2003) A palladium-alloy deposited nafion membrane for direct methanol fuel cells. J Membr Sci 215(1–2):327–336

    Article  CAS  Google Scholar 

  24. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502

    Article  CAS  Google Scholar 

  25. Tricoli V (1998) Proton and methanol transport in poly (perfluorosulfonate) membranes containing cs+ and h+ cations. J Electrochem Soc 145(11):3798

    Article  CAS  Google Scholar 

  26. Woo Y, Oh SY, Kang YS et al (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220(1–2):31–45

    Article  CAS  Google Scholar 

  27. Easton EB, Langsdorf BL, Hughes JA et al (2003) Characteristics of polypyrrole/nafion composite membranes in a direct methanol fuel cell. J Electrochem Soc 150(10):C735

    Article  CAS  Google Scholar 

  28. Huang Q, Zhang Q, Huang H et al (2008) Methanol permeability and proton conductivity of nafion membranes modified electrochemically with polyaniline. J Power Sources 184(2):338–343

    Article  CAS  Google Scholar 

  29. Kim YJ, Choi WC, Woo SI et al (2004) Proton conductivity and methanol permeation in nafionTM/ormosil prepared with various organic silanes. J Membr Sci 238(1–2):213–222

    Article  CAS  Google Scholar 

  30. Kim YM, Park KW, Choi JH et al (2003) A pd-impregnated nanocomposite nafion membrane for use in high-concentration methanol fuel in dmfc. Electrochem Commun 5(7):571–574

    Article  CAS  Google Scholar 

  31. Lin C, Lu Y (2013) Highly ordered graphene oxide paper laminated with a nafion membrane for direct methanol fuel cells. J Power Sources 237:187–194

    Article  CAS  Google Scholar 

  32. Smit M, Ocampo A, Espinosa-Medina M et al (2003) A modified nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 124(1):59–64

    Article  CAS  Google Scholar 

  33. Wang CH, Chen CC, Hsu HC et al (2009) Low methanol-permeable polyaniline/nafion composite membrane for direct methanol fuel cells. J Power Sources 190(2):279–284

    Article  CAS  Google Scholar 

  34. Li J, Yang X, Tang H et al (2010) Durable and high performance nafion membrane prepared through high-temperature annealing methodology. J Membr Sci 361(1–2):38–42

    Article  CAS  Google Scholar 

  35. Munawaroh H, Fathur RM, Gumilar G et al (2019) Characterization and physicochemical properties of chlorophyll extract from Spirulina sp. J Phys: Conf Series 1280:022013

    CAS  Google Scholar 

  36. Fiedor L, Kania A, Myśliwa-Kurdziel B et al (2008) Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. Biochim Biophys Acta Bioenerget 1777(12):1491–1500

    Article  CAS  Google Scholar 

  37. Chang H, Kao MJ, Chen TL et al (2013) Characterization of natural dye extracted from wormwood and purple cabbage for dye-sensitized solar cells. Int J Photoenergy. https://doi.org/10.1155/2013/159502

    Article  Google Scholar 

  38. Setyawati H, Darmokoesoemo H, Ningtyas ATA et al (2017) Effect of metal ion fe (iii) on the performance of chlorophyll as photosensitizers on dye sensitized solar cell. Res Phys 7:2907–2918

    Google Scholar 

  39. Baglio V, Di Blasi A, Antonucci V et al (2003) Ftir spectroscopic investigation of inorganic fillers for composite dmfc membranes. Electrochem Commun 5(10):862–866

    Article  Google Scholar 

  40. Yang H, Lee D, Park S et al (2013) Preparation of nafion/various pt-containing sio2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying pemfc. J Membr Sci 443:210–218

    Article  CAS  Google Scholar 

  41. Ostrowska J, Narebska A (1983) Infrared study of hydration and association of functional groups in a perfluorinated nafion membrane, part 1. Colloid Polym Sci 261:93–98

    Article  CAS  Google Scholar 

  42. Zhai Y, Zhang H, Hu J et al (2006) Preparation and characterization of sulfated zirconia (so42–/zro2)/nafion composite membranes for pemfc operation at high temperature/low humidity. J Membr Sci 280(1–2):148–155

    Article  CAS  Google Scholar 

  43. Sigwadi R, Dhlamini M, Mokrani T et al (2019) The proton conductivity and mechanical properties of nafion®/zrp nanocomposite membrane. Heliyon 5(8):e02240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Starkweather HW Jr (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15(2):320–323

    Article  CAS  Google Scholar 

  45. Liu HM, Wang FY, Liu YL (2016) Hot-compressed water extraction of polysaccharides from soy hulls. Food Chem 202:104–109

    Article  CAS  PubMed  Google Scholar 

  46. Zhang K, Sun P, Liu H et al (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243

    Article  CAS  Google Scholar 

  47. Hoffmann EA, Fekete ZA, Korugic-Karasz LS et al (2004) Theoretical and experimental x-ray photoelectron spectroscopy investigation of ion-implanted nafion. J Polym Sci, Part A: Polym Chem 42(3):551–556

    Article  CAS  Google Scholar 

  48. Beamson G (1992) High resolution xps of organic polymers. Anal Chim Acta 276:469–470

    Google Scholar 

  49. Nasef MM, Saidi H, Nor HM et al (2000) Xps studies of radiation grafted ptfe-g-polystyrene sulfonic acid membranes. J Appl Polym Sci 76(3):336–349

    Article  CAS  Google Scholar 

  50. Younes M, Ghorbel A, Rives A et al (2000) Study of acidity of aerogels zro2–so42-by isopropanol dehydration reaction, surface potential and x-ray photoelectron spectroscopy. J Sol–Gel Sci Technol 19(1):817–819

    Article  CAS  Google Scholar 

  51. Liu L, Chen W, Li Y (2016) An overview of the proton conductivity of nafion membranes through a statistical analysis. J Membr Sci 504:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was performed using facilities at MEMS & Microelectronics Lab., E &ECE department, IIT Kharagpur. The authors would like to thank E &ECE department for providing access to lab and staff of MEMS & Microelectronics Lab, E &ECE department, IIT Kharagpur for their help. Additionally, the authors would like to thank MeitY and DST, Government of India, for allocating funds.

Author information

Authors and Affiliations

Authors

Contributions

AD: Conceptualization, Investigation, Methodology, Software, Writing an original draft, Data curation, Formal analysis. MM: Investigation, Methodology Writing an original draft, Data curation RD: Validation, Writing-review & editing, Supervision. KB: Validation, Writing-review & editing, Supervision, Funding acquisition, Project administration.

Corresponding author

Correspondence to Tarun Kanti Bhattacharyya.

Ethics declarations

Conflict of interest

No conflict of interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Mondal, M., Dhar, R. et al. Chlorophyll interpolated nafion-membrane for flexible supercapacitor with methanol and ethanol oxidation reaction. J Appl Electrochem 54, 1447–1461 (2024). https://doi.org/10.1007/s10800-023-02035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02035-2

Keywords

Navigation