Skip to main content
Log in

Covalent functionalization of graphene oxide with l-lysine for highly sensitive and selective simultaneous electrochemical detection of rifampicin and acetaminophen

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, graphene oxide covalently functionalized with l-lysine (LSN@GO)-based electrochemical sensor has been developed for the ultrasensitive individual as well as the first ever simultaneous detection of Rifampicin (RIFA) and Acetaminophen (APAP) drugs. The synthesized LSN@GO composite, as well as its precursors LSN and GO, were characterized using FT-IR, XRD, TGA, XPS, SEM and EDAX. The electrochemical studies were performed using Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), and Electrochemical Impedance Spectroscopy (EIS). The fabricated LSN@GO/GCE electro-sensor’s interface exhibited efficient electrical activity for the analysis of RIFA and APAP under the optimized conditions, owing to its substantial electrochemically active surface area and exceptional electron transport capabilities. The detection of RIFA and APAP in various pH environments entailed a proton-dependent mechanistic approach. The sensor displayed a robust linear correlation over a broad range (0.5 to 10 µM) for both RIFA and APAP, with low detection limits of 4.3 nM for RIFA and 5.8 nM for APAP (S/N = 3), along with quantification limits of 14.6 nM for RIFA and 19.4 nM for APAP (S/N = 10) for their individual detection. For simultaneous detection, the detection limit of 4.2 nM for RIFA and 6.0 nM for APAP were observed. We successfully detected spiked RIFA and APAP in real drug and urine samples without pre-treatment, demonstrating significant detection limits and no notable interference from excipients with satisfactory recovery data. The developed sensing platform demonstrated exceptional electrochemical performance for the detection of RIFA and APAP, showcasing significant potential for applications in clinical diagnosis and pharmaceuticals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Asadpour-Zeynali K, Mollarasouli F (2017) Novel electrochemical biosensor based on PVP capped CoFe2O4@ CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens Bioelectron 92:509–516

    Article  CAS  PubMed  Google Scholar 

  2. Thapliyal N, Karpoormath RV, Goyal RN (2015) Electroanalysis of antitubercular Drugs in pharmaceutical dosage forms and biological fluids: a review. Anal Chim Acta 853:59–76

    Article  CAS  PubMed  Google Scholar 

  3. Amidi S, Ardakani YH, Amiri-Aref M, Ranjbari E, Sepehri Z, Bagheri H (2017) Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Adv 7:40111–40118

    Article  CAS  Google Scholar 

  4. Vinothkumar V, Sangili A, Chen S-M, Abinaya M (2021) Additive-free synthesis of BiVO4 microspheres as an electrochemical sensor for determination of antituberculosis drug rifampicin. Colloids Surf a 624:126849

    Article  CAS  Google Scholar 

  5. Manjunatha R, Nagaraju DH, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2011) Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique. Electrochim Acta 56:6619–6627

    Article  CAS  Google Scholar 

  6. Chen X, Zhu J, Xi Q, Yang W (2012) A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films. Sens Actuators B 161:648–654

    Article  CAS  Google Scholar 

  7. Kumar SA, Tang C-F, Chen S-M (2008) Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta 76:997–1005

    Article  CAS  PubMed  Google Scholar 

  8. Adhikari B-R, Govindhan M, Chen A (2015) Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim Acta 162:198–204

    Article  CAS  Google Scholar 

  9. Nolan CM, Sandblom RE, Thummel KE, Slattery JT, Nelson SD (1994) Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 105:408–411

    Article  CAS  PubMed  Google Scholar 

  10. Dimova S, Stoytchev T (1994) Influence of rifampicin on the toxicity and the analgesic effect of acetaminophen. Eur J Drug Metab Pharmacokinet 19:311–317

    Article  CAS  PubMed  Google Scholar 

  11. Khanage SG, Mohite PB, Jadhav S (2013) Development and validation of UV–Visible spectrophotometric method for simultaneous determination of eperisone and paracetamol in solid dosage form. Adv Pharm Bull 3:447–451

    PubMed  PubMed Central  Google Scholar 

  12. Khan MF, Rita SA, Kayser MS, Islam MS, Asad S, Bin Rashid R, Bari MA, Rahman MM, Al Aman DA, Setu NI (2017) Theoretically guided analytical method development and validation for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometer. Front Chem 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  13. Omar J, Boix A, Ulberth F (2020) Raman spectroscopy for quality control and detection of substandard painkillers. Vib Spectrosc 111:103147

    Article  CAS  Google Scholar 

  14. Chellini PR, Mendes TO, Franco PH, Porto BL, Tippavajhala VK, César IC, Oliveira MA, Pianetti GA (2017) Simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol in 4-FDC tablet by Raman spectroscopy associated to chemometric approach. Vib Spectrosc 90:14–20

    Article  CAS  Google Scholar 

  15. Easwaramoorthy D, Yu Y-C, Huang H-J (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta 439:95–100

    Article  CAS  Google Scholar 

  16. Shokri R, Amjadi M (2022) Boron and nitrogen co-doped carbon dots as a chemiluminescence probe for sensitive assay of rifampicin. J Photochem Photobiol A 425:113694

    Article  CAS  Google Scholar 

  17. Chumbley CW, Reyzer ML, Allen JL, Marriner GA, Via LE, Barry CE III, Caprioli RM (2016) Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal Chem 88:2392–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Montaseri H, Forbes PB (2018) Analytical techniques for the determination of acetaminophen: a review. TRAC Trends Anal Chem 108:122–134

    Article  CAS  Google Scholar 

  19. Kolmer EWvE-B, Teulen MJ, van den Hombergh EC, van Erp NE, Te Brake LH, Aarnoutse RE (2017) Determination of protein-unbound, active rifampicin in serum by ultrafiltration and ultra performance liquid chromatography with UV detection. A method suitable for standard and high doses of rifampicin. J Chromatogr B 1063:42–49

    Article  Google Scholar 

  20. Ali M, Sharma S, Singh R, Sharma K, Majhi S, Guin D, Tripathi CSP (2022) Barium titanate nanocubes as a dual electrochemical sensor for detection of dopamine and acetaminophen. J Electrochem Soc 169:067512

    Article  CAS  Google Scholar 

  21. Zhang Q, Ma S, Zhuo X, Wang C, Wang H, Xing Y, Xue Q, Zhang K (2022) An ultrasensitive electrochemical sensing platform based on silver nanoparticle-anchored 3D reduced graphene oxide for rifampicin detection. Analyst 147:2156–2163

    Article  CAS  PubMed  Google Scholar 

  22. Tan K, Ma Q, Luo J, Xu S, Zhu Y, Wei W, Liu X, Gu Y (2018) Water-dispersible molecularly imprinted nanohybrids via co-assembly of carbon nanotubes with amphiphilic copolymer and photocrosslinking for highly sensitive and selective paracetamol detection. Biosens Bioelectron 117:713–719

    Article  CAS  PubMed  Google Scholar 

  23. Guo Z, Wang Z-y, Wang H-h, Huang G-q, Li M-m (2015) Electrochemical sensor for isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials. Mater Sci Eng: C 57:197–204

    Article  CAS  Google Scholar 

  24. Mehmandoust M, Tiris G, Pourhakkak P, Erk N, Soylak M, Kanberoglu GS, Zahmakiran M (2023) An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection. Microchim Acta 190:142

    Article  CAS  Google Scholar 

  25. Mehmandoust M, Uzcan F, Soylak M, Erk N (2022) Dual-response electrochemical electrode for sensitive monitoring of topotecan and mitomycin as anticancer drugs in real samples. Chemosphere 291:132809

    Article  CAS  PubMed  Google Scholar 

  26. Mehmandoust M, Karimi F, Erk N (2022) A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. Chemosphere 300:134430

    Article  CAS  PubMed  Google Scholar 

  27. Adhikari B-R, Govindhan M, Schraft H, Chen A (2016) Simultaneous and sensitive detection of acetaminophen and valacyclovir based on two dimensional graphene nanosheets. J Electroanal Chem 780:241–248

    Article  CAS  Google Scholar 

  28. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212

    Article  CAS  PubMed  Google Scholar 

  29. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review electroanalysis. Electroanal: Int J Devoted Fundam Practical Aspects Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  30. Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, Hirsch A, Martín N, D’Souza F, Torres T (2017) Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 46:4464–4500

    Article  CAS  PubMed  Google Scholar 

  31. Muzyka R, Kwoka M, Smędowski Ł, Díez N, Gryglewicz G (2017) Oxidation of graphite by different modified hummers methods. New Carbon Mater 32:15–20

    Article  CAS  Google Scholar 

  32. Gurzęda B, Florczak P, Kempiński M, Peplińska B, Krawczyk P, Jurga S (2016) Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon 100:540–545

    Article  Google Scholar 

  33. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472

    Article  CAS  PubMed  Google Scholar 

  34. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25:12030–12033

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201–202:250–259

    Article  PubMed  Google Scholar 

  36. Roy S, Soin N, Bajpai R, Misra DS, McLaughlin JA, Roy SS (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21:14725–14731

    Article  CAS  Google Scholar 

  37. Salih E, Mekawy M, Hassan RYA, El-Sherbiny IM (2016) Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J Nanostruct Chem 6:137–144

    Article  Google Scholar 

  38. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W (2012) Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta 93:320–325

    Article  CAS  PubMed  Google Scholar 

  39. Qiao W, Wang L, Ye B, Li G, Li J (2015) Electrochemical behavior of palmatine and its sensitive determination based on an electrochemically reduced l-methionine functionalized graphene oxide modified electrode. Analyst 140:7974–7983

    Article  CAS  PubMed  Google Scholar 

  40. Ma X, Chen M, Lv H, Deng Z, Yin M, Wang X (2018) Electrochemical determination of quercetin in hawthorn and onion using a poly (l-lysine)/graphene film electrode. Int J Electrochem Sci 13:6286–6295

    Article  CAS  Google Scholar 

  41. Sun W, Zhang Y, Ju X, Li G, Gao H, Sun Z (2012) Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-l-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Anal Chim Acta 752:39–44

    Article  CAS  PubMed  Google Scholar 

  42. Guo Z, Huang G-q, Li J, Wang Z-y, Xu X-f (2015) Graphene oxide-Ag/poly-l-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid. J Electroanal Chem 759:113–121

    Article  CAS  Google Scholar 

  43. Zhang D, Zhang Y, Zheng L, Zhan Y, He L (2013) Graphene oxide/poly-l-lysine assembled layer for adhesion and electrochemical impedance detection of Leukemia K562 cancercells. Biosens Bioelectron 42:112–118

    Article  CAS  PubMed  Google Scholar 

  44. Prakash V, Sharma S, Kaur J, Mehta SK (2018) Graphene oxide/lysine composite—a potent electron mediator for detection of diazepam. Anal Methods 10:5038–5046

    Article  CAS  Google Scholar 

  45. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  46. Yan Y, Li J, Kong F, Jia K, He S, Wang B (2017) l-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions. Beilstein J Nanotechnol 8:2680–2688

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  48. Qu K, Wu L, Ren J, Qu X (2012) Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS Appl Mater Interfaces 4:5001–5009

    Article  CAS  PubMed  Google Scholar 

  49. Shaabani A, Mahyari M (2013) PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. J Mater Chem A 1:9303–9311

    Article  CAS  Google Scholar 

  50. Van Khai T, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, Kim HW (2012) Influence of N-doping on the structural and photoluminescence properties of graphene oxide films. Carbon 50:3799–3806

    Article  Google Scholar 

  51. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842

    Article  CAS  Google Scholar 

  52. Zhou L, Yin M, Jiang X, Huang Q, Lang W (2016) Synthesis and characterization of 1,3-diamino-graphene as a heterogeneous ligand for a CuI-catalyzed C–N coupling reaction. New J Chem 40:1454–1459

    Article  CAS  Google Scholar 

  53. Sapner VS, Chavan PP, Sathe BR (2020) l-Lysine-functionalized reduced graphene oxide as a highly efficient electrocatalyst for enhanced oxygen evolution reaction. ACS Sustain Chem Eng 8:5524–5533

    Article  CAS  Google Scholar 

  54. Nayak DS, Shetti NP (2016) A novel sensor for a food dye erythrosine at glucose modified electrode. Sens Actuators B 230:140–148

    Article  CAS  Google Scholar 

  55. Sharma K, Majhi S, Tripathi CSP, Guin D (2022) Electrochemical sensing platform based on greenly synthesized gum Arabic stabilized silver nanoparticles for hydrogen peroxide and glucose. J Electrochem Soc 169:127519

    Article  CAS  Google Scholar 

  56. Rawool CR, Srivastava AK (2019) A dual template imprinted polymer modified electrochemical sensor based on Cu metal organic framework/mesoporous carbon for highly sensitive and selective recognition of rifampicin and isoniazid. Sens Actuators B 288:493–506

    Article  CAS  Google Scholar 

  57. Huang J, Qiu Z, Yang H, Chen C, Li Y (2022) Highly selective simultaneous determination of isoniazid and acetaminophen using black phosphorus nanosheets electrochemical sensor. Electrochim Acta 426:140775

    Article  CAS  Google Scholar 

  58. Mehmandoust M, Çakar S, Özacar M, Erk N (2022) The Determination of timolol maleate using silver/tannic acid/titanium oxide nanocomposite as an electrochemical sensor in real samples. Electroanalysis 34:1150–1162

    Article  CAS  Google Scholar 

  59. Shiri S, Pajouheshpoor N, Khoshsafar H, Amidi S, Bagheri H (2017) An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2O4 nanocomposite modified carbon paste electrode. New J Chem 41:15564–15573

    Article  CAS  Google Scholar 

  60. Veera Manohara Reddy Y, Sravani B, Łuczak T, Mallikarjuna K, Madhavi G (2021) An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids Surf a 608:125533

    Article  CAS  Google Scholar 

  61. Huang Q, Li X, Feng S, Zhuge W, Liu F, Peng J, Mo S (2018) An electrochemical sensor based on the composite of molybdenum carbides and a multiwalled carbon nanotube modified electrode for the ultrasensitive detection of rifampicin. Anal Methods 10:3594–3601

    Article  CAS  Google Scholar 

  62. Xiang G, He X, Zhuge W, Liu Y, Zhang C, Peng J (2023) Quinoxaline-based conjugated microporous polymer-grafted graphene sensors for the sensitive detection of rifampicin. Microchem J 190:108595

    Article  CAS  Google Scholar 

  63. Karuppusamy N, Mariyappan V, Chen SM, Thangamuthu MD, Li R-H (2023) Unveiling electrocatalytic performance of MnCo-P on sulfur-doped reduced graphene oxide for electrochemical detection of acetaminophen. Surf Interfaces 37:102681

    Article  CAS  Google Scholar 

  64. Ujwal MP, Yashas SR, Shivaraju HP, Kumara N, Swamy (2022) Gadolinium Ortho-ferrite interfaced polyaniline: bi-functional catalyst for electrochemical detection and photocatalytic degradation of acetaminophen. Surf Interfaces 30:101878

    Article  CAS  Google Scholar 

  65. Guo L, Hao L, Zhang Y, Yang X, Wang Q, Wang Z, Wang C (2021) Metal-organic framework precursors derived Ni-doping porous carbon spheres for sensitive electrochemical detection of acetaminophen. Talanta 228:122228

    Article  CAS  PubMed  Google Scholar 

  66. Wu Y, Wu Y, Lv X, Lei W, Ding Y, Chen C, Lv J, Feng S, Chen S-M, Hao Q (2020) A sensitive sensing platform for acetaminophen based on palladium and multi-walled carbon nanotube composites and electrochemical detection mechanism. Mater Chem Phys 239:121977

    Article  CAS  Google Scholar 

  67. Patil VB, Sawkar RR, Ilager D, Shetti NP, Tuwar SM, Aminabhavi TM (2022) Glucose-based carbon electrode for trace‐level detection of acetaminophen. Electrochem Sci Adv 2:e202100117

    Article  CAS  Google Scholar 

  68. Yan Y, Liu Z, Xie P, Huang S, Chen J, Caddeo F, Liu X, Huang Q, Jin M, Shui L (2023) Sensitive electrochemical assay of acetaminophen based on 3D-hierarchical mesoporous carbon nanosheets. J Colloid Interface Sci 634:509–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KS, SS, and AK thank BHU, Varanasi for PhD fellowships. KS also acknowledge the credit research incentive scheme by IoE, BHU. CSPT and DG acknowledge IoE Cell BHU for providing seed grant under the IoE scheme (Dev. Scheme No. 6031) and trans-disciplinary research grant (Dev. Scheme No. 6031(A)). The authors also acknowledge Central Discovery Centre, BHU, department of Chemistry and department of Physics for the use of Instrumentation facilities.

Funding

No external funding was received.

Author information

Authors and Affiliations

Authors

Contributions

DG designed the study. KS, AK, SS and CSPT contributed to the sample preparation, measurements, data analysis and discussion. KS wrote the main manuscript with inputs and helps from CSPT and DG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chandra Shekhar Pati Tripathi or Debanjan Guin.

Ethics declarations

Conflict of interest

The authors declare the absence of all known competing financial interests or personal relationships that could influence this work.

Ethical approval

All procedures performed in the studies comply with ethical standards.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Kumar, A., Sharma, S. et al. Covalent functionalization of graphene oxide with l-lysine for highly sensitive and selective simultaneous electrochemical detection of rifampicin and acetaminophen. J Appl Electrochem (2023). https://doi.org/10.1007/s10800-023-02031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-023-02031-6

Keywords

Navigation