Skip to main content
Log in

Enhanced voltammetric sensing platform based on gold nanorods and electrochemically reduced graphene oxide for As(III) determination in seafood samples

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) modified with electrochemically reduced graphene oxide (ErGO) and gold nanorods (AuNRs) (GCE/ErGO/AuNRs) was prepared for determining As(III) in bivalve mollusks samples (Mytilus chilensis). The modified electrode was characterized by cyclic voltammetry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Chemical and electrochemical parameters were optimized, observing that the presence of AuNRs provides selectivity, while the incorporation of ErGO improves the sensitivity of the modified electrode for the detection of As(III). Using square wave anodic stripping voltammetry (SWASV), a linear range of 2.0–60.0 µg L−1 with a detection limit (LOD) of 0.21 µg L−1 was obtained. The validation was made using water and mussel tissue-certified reference materials (TMDA-64.2 and ERM®-CE278k, respectively), showing good accuracy and reproducibility. The methodology allowed the determination of As(III) in real samples of marine resources, with excellent results (RSD < 2%).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferraris F, Iacoponi F, Raggi A, Baldi F, Fretigny M, Mantovani A, Cubadda F (2021) Essential and toxic elements in sustainable and underutilized seafood species and derived semi-industrial ready-to-eat products. Food Chem Toxicol 154:112331. https://doi.org/10.1016/j.fct.2021.112331

    Article  CAS  PubMed  Google Scholar 

  2. Shah SB (2021) Heavy metals in the marine environment—an overview. Heavy Met Scleractinian corals. https://doi.org/10.1007/978-3-030-73613-2_1

    Article  Google Scholar 

  3. Vieira KS, Delgado JF, Lima LS, Souza PF, Crapez M, Correa TR, Aguiar V, Neto JB, Fonseca EM (2021) Human health risk assessment associated with the consumption of mussels (Perna perna) and oysters (Crassostrea rhizophorae) contaminated with metals and arsenic in the estuarine channel of Vitória Bay (ES), Southeast Brazil, Mar. Pollut Bull 172:112877. https://doi.org/10.1016/j.marpolbul.2021.112877

    Article  CAS  Google Scholar 

  4. Chiocchetti G, Jadan-Piedra C, Velez D, Devesa V (2017) Metal (loid) contamination in seafood products. Crit Rev Food Sci Nutr 57:3715–3728. https://doi.org/10.1080/10408398.2016.1161596

    Article  CAS  PubMed  Google Scholar 

  5. USEPA (1979) Water Related Fate of the 129 Priority pollutants, vol 1. USEPA, Washington, DC, USA

    Google Scholar 

  6. Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. The Lancet 376:252–258. https://doi.org/10.1016/S0140-6736(10)60481-3

    Article  CAS  Google Scholar 

  7. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  8. Karagas MR, Gossai A, Pierce B, Ahsan H (2015) Drinking water arsenic contamination, skin lesions, and malignancies: a systematic review of the global evidence. Curr Environ Health Rep 2:52–68. https://doi.org/10.1007/s40572-014-0040-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice 6:1–10. https://doi.org/10.1186/1939-8433-6-3

    Article  Google Scholar 

  10. Chung J, Yu S, Hong Y (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47:253. https://doi.org/10.3961/jpmph.14.036

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hasegawa H, Papry RI, Ikeda E, Omori Y, Mashio AS, Maki T, Rahman MA (2019) Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic. Sci Rep. https://doi.org/10.1038/s41598-019-48477-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135. https://doi.org/10.1016/j.envres.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  13. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric 96:32–48. https://doi.org/10.1002/jsfa.7360

    Article  CAS  PubMed  Google Scholar 

  14. Xie Q, Gui D, Liu W, Wu Y (2020) Risk for indo-pacific humpback dolphins (Sousa chinensis) and human health related to the heavy metal levels in fish from the Pearl River Estuary. China, Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124844

    Article  PubMed  Google Scholar 

  15. Rainbow PS (2017) The Biology of Heavy metals in the Sea. Anonymous Water and the Environment. CRC Press, pp 415–431. https://doi.org/10.1201/9780203867068

  16. Duarte FA, Pereira JSF, Barin JS, Mesko MF, Dressler VL, de Moraes Flores EM, Knapp G (2009) Seafood digestion by microwave-induced combustion for total arsenic determination by atomic spectrometry techniques with hydride generation. J Anal at Spectrom 24:224–227. https://doi.org/10.1039/B810952D

    Article  CAS  Google Scholar 

  17. Heitkemper DT, Vela NP, Stewart KR, Westphal CS (2001) Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J Anal at Spectrom 16:299–306. https://doi.org/10.1039/B007241I

    Article  CAS  Google Scholar 

  18. He Y, Liu J, Duan Y, Yuan X, Ma L, Dhar R, Zheng Y (2023) A critical review of on-site inorganic arsenic screening methods. J Environ Sci 125:453–469. https://doi.org/10.1016/j.jes.2022.01.034

    Article  CAS  Google Scholar 

  19. Salunke RS, Nakate YT, Umar A, Nakate UT, Ahmad R, Shirale DJ (2021) Anodic stripping voltammetry analysis of gold nanoparticles functionalized one-dimensional single polypyrrole nanowire for arsenic sensing. Surf Interfaces 23:100895. https://doi.org/10.1016/j.surfin.2020.100895

    Article  CAS  Google Scholar 

  20. Punrat E, Chuanuwatanakul S, Kaneta T, Motomizu S, Chailapakul O (2013) Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode. Talanta 116:1018–1025. https://doi.org/10.1016/j.talanta.2013.08.030

    Article  CAS  PubMed  Google Scholar 

  21. Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185:1–8. https://doi.org/10.1007/s00604-018-2821-7

    Article  CAS  Google Scholar 

  22. Devi P, Thakur A, Lai RY, Saini S, Jain R, Kumar P (2019) Progress in the materials for optical detection of arsenic in water. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2018.10.008

    Article  Google Scholar 

  23. Sullivan C, Lu D, Senecal A, Kurup P (2021) Voltammetric detection of arsenic (III) using gold nanoparticles modified carbon screen printed electrodes: application for facile and rapid analysis in commercial apple juice. Food Chem 352:129327. https://doi.org/10.1016/j.foodchem.2021.129327

    Article  CAS  PubMed  Google Scholar 

  24. Silva SM, Aguiar LF, Carvalho R, Tanaka AA, Damos FS, Luz R (2016) A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen. Microchim Acta 183:1251–1259. https://doi.org/10.1007/s00604-016-1750-6

    Article  CAS  Google Scholar 

  25. Lee S, Park S, Choi E, Piao Y (2016) Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J Electroanal Chem 766:120–127. https://doi.org/10.1016/j.jelechem.2016.02.003

    Article  CAS  Google Scholar 

  26. Zhu Y, Pan D, Hu X, Han H, Lin M, Wang C (2017) An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters. Sens Actuators B: Chem 243:1–7. https://doi.org/10.1016/j.snb.2016.11.108

    Article  CAS  Google Scholar 

  27. Lang Q, Han L, Hou C, Wang F, Liu AA (2016) Sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta. https://doi.org/10.1016/j.talanta.2016.05.002

    Article  PubMed  Google Scholar 

  28. Alagiri M, Rameshkumar P, Pandikumar A (2017) Gold nanorod-based electrochemical sensing of small biomolecules: a review. Microchim Acta 184:3069–3092. https://doi.org/10.1007/s00604-017-2418-6

    Article  CAS  Google Scholar 

  29. Dao AQ, Nguyen DM, Toan TTT (2021) Determination of arsenic (III) in water using gold nanorods-modified electrode. J Mater Sci : Mater Electron 32:27962–27974. https://doi.org/10.1007/s10854-021-07177-7

    Article  CAS  Google Scholar 

  30. Đurović A, Stojanović Z, Bytešníková Z, Kravić S, Švec P, Přibyl J, Richtera L (2022) Reduced graphene oxide/ZnO nanocomposite modified electrode for the detection of tetracycline. J Mater Sci 57:5533–5551. https://doi.org/10.1007/s10853-022-06926-1

    Article  CAS  Google Scholar 

  31. Nawaz M, Shaikh H, Buledi JA, Solangi AR, Karaman C, Erk N, Darabi R, Camarada MB (2023) Fabrication of ZnO-doped reduce graphene oxide-based electrochemical sensor for the determination of 2, 4, 6-trichlorophenol from aqueous environment. Carbon Lett. https://doi.org/10.1007/s42823-023-00562-8

    Article  Google Scholar 

  32. Darabi R, Karimi-Maleh H, Akin M, Arikan K, Zhang Z, Bayat R, Bekmezci M, Sen F (2023) Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor. Electrochim Acta 457:142402. https://doi.org/10.1016/j.electacta.2023.142402

    Article  CAS  Google Scholar 

  33. Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186:1–17. https://doi.org/10.1007/s10853-022-06926-1

    Article  CAS  Google Scholar 

  34. Bai J, Hong W, Bai H (2022) Electrochemically reduced graphene oxide: preparation, composites, and applications. Carbon. https://doi.org/10.1016/j.carbon.2022.01.056

    Article  Google Scholar 

  35. Navarro F, Segura R, Godoy F, Marti AA, Mascayano C, Aguirre MJ, Flores E, Pizarro J (2023) Fast and simple preparation of a sensor based on electrochemically reduced graphene oxide (rGO) for the determination of zopiclone in pharmaceutical dosage by square wave adsorptive stripping voltammetry (SWAdSV). Electroanalysis 35:e202200357. https://doi.org/10.1002/elan.202200357

    Article  CAS  Google Scholar 

  36. Bu L, Gu T, Ma Y, Chen C, Tan Y, Xie Q, Yao S (2015) Enhanced cathodic preconcentration of as (0) at au and pt electrodes for anodic stripping voltammetry analysis of as (III) and as (V). J Phys Chem C 119:11400–11409. https://doi.org/10.1021/acs.jpcc.5b01435

    Article  CAS  Google Scholar 

  37. Pizarro J, Segura R, Tapia D, Bollo S, Sierra-Rosales P (2019) Electroanalytical determination of cd (II) and pb (II) in Bivalve mollusks using electrochemically reduced Graphene Oxide-based Electrode. Electroanalysis. https://doi.org/10.1002/elan.201900061

    Article  Google Scholar 

  38. Jurica L’, Manova A, Dzurov J, Beinrohr E, Broekaert J (2000) Calibrationless flow-through stripping coulometric determination of arsenic (III) and total arsenic in contaminated water samples after microwave assisted reduction of arsenic (V). Fresenius J Anal Chem 366:260–266. https://doi.org/10.1007/s002160050051

    Article  CAS  PubMed  Google Scholar 

  39. Vigderman L, Zubarev ER (2015) No title, High-yield synthesis of gold nanorods with optical absorption at wavelengths greater than 1000nm using hydroquinone. U.S. Patent No 8,956,440, 17 Feb. 2015

  40. Liendo F, de la Vega AP, Aguirre MJ, Godoy F, Martí AA, Flores E, Pizarro J, Segura R (2022) A simple graphene modified electrode for the determination of antimony (III) in edible plants and beverage. Food Chem 367:130676. https://doi.org/10.1016/j.foodchem.2021.130676

    Article  CAS  PubMed  Google Scholar 

  41. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658. https://doi.org/10.1021/nl900034v

    Article  CAS  PubMed  Google Scholar 

  42. Furue R, Koveke EP, Sugimoto S, Shudo Y, Hayami S, Ohira S, Toda K (2017) Arsine gas sensor based on gold-modified reduced graphene oxide. Sens Actuators B: Chem 240:657–663. https://doi.org/10.1016/j.snb.2016.08.131

    Article  CAS  Google Scholar 

  43. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of Arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924–5929. https://doi.org/10.1021/ac049232x

    Article  CAS  PubMed  Google Scholar 

  44. Ferreira MA, Barros AA (2002) Determination of as (III) and arsenic (V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Anal Chim Acta 459:151–159. https://doi.org/10.1016/S0003-2670(02)00086-7

    Article  CAS  Google Scholar 

  45. Huang J, Chen H (2013) Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic (III). Talanta 116:852–859. https://doi.org/10.1016/j.talanta.2013.07.063

    Article  CAS  PubMed  Google Scholar 

  46. Lan Y, Luo H, Ren X, Wang Y, Wang L (2012) Glassy carbon electrode modified with citrate stabilized gold nanoparticles for sensitive arsenic (III) detection. Anal Lett 45:1184–1196. https://doi.org/10.1080/00032719.2012.673108

    Article  CAS  Google Scholar 

  47. Bu L, Liu J, Xie Q, Yao S (2015) Anodic stripping voltammetric analysis of trace arsenic (III) enhanced by mild hydrogen-evolution at a bimetallic Au–Pt nanoparticle modified glassy carbon electrode. Electrochem Commun 59:28–31. https://doi.org/10.1016/j.elecom.2015.06.015

    Article  CAS  Google Scholar 

  48. Liu Y, Huang Z, Xie Q, Sun L, Gu T, Li Z, Bu L, Yao S, Tu X, Luo X (2013) Electrodeposition of Electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic (III). Sens Actuators B: Chem 188:894–901. https://doi.org/10.1016/j.snb.2013.07.113

    Article  CAS  Google Scholar 

  49. Ebrahimi S, Afkhami A, Madrakian T, Amouzegar Z (2023) Self-supporting porous S-doped graphitic carbon nitride as a multifunctional support of au catalyst: application to highly sensitive and selective determination of arsenic (III) in a wide range of pH. Electrochim Acta 437:141496. https://doi.org/10.1016/j.electacta.2022.141496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks financial support under the Projects: 022042SS-POSTDOC ((Dicyt-USACH) C. Núñez), ANID Fondecyt postdoctorado N° 3200644 (E. Flores), Fondecyt Regular N° 1211637 (V. Arancibia); N° 1230628 (R. Segura), Proyecto de investigación, ANID, Subvención a la instalación académica convocatoria año 2022 (SIA85220089) (J. Pizarro), Millenium Institute on Green Ammonia as Energy Vector MIGA, ANID/Millenium Science Initiative Program/ICN2021_023 (M. J. Aguirre), and Fondequip EQM190016.

Author information

Authors and Affiliations

Authors

Contributions

BP contributed to investigation, formal analysis, visualization, and writing, reviewing, & editing of the manuscript; CN contributed to investigation and writing, reviewing, & editing of the manuscript; VA contributed to supervision and writing, reviewing, & editing of the manuscript; AAM contributed to supervision and writing, reviewing, & editing of the manuscript; MJA contributed to supervision and writing, reviewing, & editing of the manuscript; JP contributed to formal analysis, investigation, methodology, writing of the original draft, and writing, reviewing, & editing of the manuscript; RS contributed to writing, reviewing, & editing of the manuscript, supervision, resources, and funding acquisition. EF contributed to conceptualization, formal analysis, investigation, methodology, writing of the original draft, writing, reviewing, & editing of the manuscript, validation, and supervision.

Corresponding authors

Correspondence to Rodrigo Segura or Erick Flores.

Ethics declarations

Competing interest

The authors declare no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 38 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichún, B., Núñez, C., Arancibia, V. et al. Enhanced voltammetric sensing platform based on gold nanorods and electrochemically reduced graphene oxide for As(III) determination in seafood samples. J Appl Electrochem (2023). https://doi.org/10.1007/s10800-023-02026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-023-02026-3

Keywords

Navigation