Skip to main content
Log in

Electrochemical sensor for detection of dopamine and tyrosine using CdS–C quantum dots modified electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The current study focuses on employing CdS–C quantum dots on a glassy carbon electrode to design and fabricate a sensor with good sensitivity and selectivity for the detection of tyrosine and dopamine using a drop casting method. The hybrid CdS–C quantum dots were created using a simple microwave method which exhibited good porosity and crystallinity. SEM, TEM, XRD and pore size distribution methods were used to characterize the quantum dots produced. The newly developed electrode evaluated for sensing dopamine and tyrosine by using various electrochemical characterization techniques. The detection limit of dopamine has been determined to be 46 nM. Dopamine and tyrosine electrochemical detection indicated good selectivity and sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Date will not be provided publicly by all authors, and it will be provided immediately based on suitable request to the corresponding author.

References

  1. Tell B, Damen TC, Porto SPS (1966) Phys Rev 144:771–774. https://doi.org/10.1103/PHYSREV.144.771

    Article  CAS  Google Scholar 

  2. Thomas DG, Hopfield JJ, Power M (1960) Phys Rev 119:570–574. https://doi.org/10.1103/PHYSREV.119.570

    Article  CAS  Google Scholar 

  3. Boer KW (2011) Energy Convers Manag 52:426–430. https://doi.org/10.1016/J.ENCONMAN.2010.07.017

    Article  Google Scholar 

  4. Qutub N, Sabir S (2012) J Nanosci Nanotechnol 8:111–120. http://www.ijnnonline.net/article_3916 Accessed 1 June 2012.

    Google Scholar 

  5. Han C, Chen Z, Zhang N, Colmenares JC, Xu YJ (2015) Adv Funct Mater 25:221–229. https://doi.org/10.1002/ADFM.201402443

    Article  CAS  Google Scholar 

  6. Bera R, Kundu S, Patra A (2015) ACS Appl Mater Interfaces 7:13251–13259. https://doi.org/10.1021/ACSAMI.5B03800

    Article  CAS  PubMed  Google Scholar 

  7. Zhang N, Zhang Y, Pan X, Fu X, Liu S, Xu Y-J (2011) J Phys Chem C 115:23501–23511. https://doi.org/10.1021/JP208661N

    Article  CAS  Google Scholar 

  8. Ma F, Wu Y, Shao Y, Zhong Y, Lv J, Hao X (2016) Nano Energy 27:466–474. https://doi.org/10.1016/j.nanoen.2016.07.014

    Article  CAS  Google Scholar 

  9. Ma S, Xie J, Wen J, He K, Li X, Liu W, Zhang X (2017) Appl Surf Sci 391:580–591. https://doi.org/10.1016/J.APSUSC.2016.07.067

    Article  CAS  Google Scholar 

  10. Yang H, Li J, Yu L, Huang B, Ma Y, Dai Y (2018) J Mater Chem 6:4161–4166. https://doi.org/10.1039/C7TA10624F

    Article  CAS  Google Scholar 

  11. Zhang H-Y (2016) Optoelectron Lett 12:81–84. https://doi.org/10.1007/S11801-016-5240-1

    Article  Google Scholar 

  12. Chen R, Han B, Yang L, Yang Y, Xu Y, Mai Y (2016) J Lumin 172:197–200. https://doi.org/10.1016/J.JLUMIN.2015.12.006

    Article  CAS  Google Scholar 

  13. Ren B, Cao M, Zhang Q, Huang J, Zhao Z, Jin X, Li C, Shen Y, Wang L (2016) J Alloys Compd 659:74–81. https://doi.org/10.1016/J.JALLCOM.2015.11.030

    Article  CAS  Google Scholar 

  14. Elavarthi P, Kumar AA, Murali G, Reddy DA, Gunasekhar K (2016) J Alloys Compd 656:510–517. https://doi.org/10.1016/J.JALLCOM.2015.09.244

    Article  CAS  Google Scholar 

  15. Darwish M, Mohammadi A, Assi N (2016) Mater Res Bull 74:387–396. https://doi.org/10.1016/J.MATERRESBULL.2015.11.002

    Article  CAS  Google Scholar 

  16. Desnica U, Gamulin O, Tonejc A, Ivanda M, White C, Sonder E, Zuhr R (2001) Mater Sci Eng C 15:105–107. https://doi.org/10.1016/S0928-4931(01)00262-4

    Article  Google Scholar 

  17. Yang H, Huang C, Li X, Shi R, Zhang K (2005) Mater Chem Phys 90:155–158. https://doi.org/10.1016/J.MATCHEMPHYS.2004.10.028

    Article  CAS  Google Scholar 

  18. Chander S, Dhaka MS (2017) J Mater Sci Mater Electron 28:6852–6859. https://doi.org/10.1007/S10854-017-6384-X

    Article  CAS  Google Scholar 

  19. Yang G, Park SJ (2019) Materials 12:1177. https://doi.org/10.3390/ma12071177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al-Sehemi AG, Al-Shihri AS, Kalam A, Du G, Ahmad T (2014) J Mol Struct 56:1058. https://doi.org/10.1016/j.molstruc.2013.10.065

    Article  CAS  Google Scholar 

  21. Shaibaie M, Madvar SR, Ameri A, Moghadam PA, Sardou MA, Farootanfar H (2021). J Clust Sci. https://doi.org/10.1007/s10876-021-02107-3

    Article  Google Scholar 

  22. Bandi R, Alle M, Park C-W, Han S-Y, Kwon G-J, Kim J-C, Lee S-H (2020). Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116356

    Article  PubMed  Google Scholar 

  23. El-Naggar ME, Shaheen TI, Fouda MM, Hebeish AA (2016) Carbohydr Polym 136:1128. https://doi.org/10.1016/j.carbpol.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Jahan I, Erci F, Isildak I (2020). J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2020.102172

    Article  Google Scholar 

  25. Salari Z, Ameri A, Forootanfar H, Adeli-Sardou M, Jafari M, Mehrabani M, Shakibaie M (2017). J Trace Elem Med Biol. https://doi.org/10.1016/j.jtemb.2016.09.001

    Article  PubMed  Google Scholar 

  26. Salavati-Niasari M, Khoshroozi S, Sabet M (2013) J Clust Sci 24:299. https://doi.org/10.1007/s10876-013-0556-5

    Article  CAS  Google Scholar 

  27. Xaba T, Moloto M, Moloto N (2015) Mater Lett 146:91–95

    Article  CAS  Google Scholar 

  28. Thakkar KN, Mhatre SS, Parikh RY (2010) Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  29. Hasheena M, Ratnamala A, Deepthi Reddy G, Noorjahan M, Shiprad K, Manjunatha H, Chandrababu Naidu K (2022) Appl Phys A 3:128. https://doi.org/10.1007/s00339-022-05352-z

    Article  CAS  Google Scholar 

  30. Manikandan K, Surendra Dilip C, Mani P, Joseph Prince J (2015). Am J Eng Appl Sci. https://doi.org/10.3844/ajeassp.2015.318.327

    Article  Google Scholar 

  31. Wang S, Yu J, Zhao P, Li J, Han S (2021) J Alloys Compd 854:157195

    Article  CAS  Google Scholar 

  32. Lei J, Mengying X, Shan J, Pier-Luc T, Tian Z (2022) Cellulose 29(1):1–17. https://doi.org/10.1007/s10570-021-04284-w

    Article  CAS  Google Scholar 

  33. Sun B, Zheng J, Yin D, Jin H, Wang X, Xu Q, Liu A, Wang S (2022) Appl Surf Sci 592:153277

    Article  CAS  Google Scholar 

  34. Chestnoy N, Harris TD, Hull R, Brus LE (1986) J Phys Chem 90:3393–3399

    Article  CAS  Google Scholar 

  35. Wang P, Li Y, Huang X, Wang L (2007) Talanta 73:431

    Article  CAS  PubMed  Google Scholar 

  36. Luz RDCS, Damos FS, Oliveira ABD, Beck J, Kubota LT (2005) Electrochem Acta 50:2675

    Article  Google Scholar 

  37. Zhao H, Zhang Y, Yuan Z (2001) Analyst 126:358–360

    Article  CAS  PubMed  Google Scholar 

  38. Jin G, Zhang Y, Cheng W (2005) Sens Actuators B 107:528–534

    Article  CAS  Google Scholar 

  39. Borchert H, Talapin DV, Gaponik N, McGinley C (2003) Chem Biol 107:9662–9668

    CAS  Google Scholar 

  40. Stewart AJ, Hendry J, Dennany L (2015) Anal Chem 87:11847–11853

    Article  CAS  PubMed  Google Scholar 

  41. Yang M, Yang X, Wang M, Jiang R (2017). Anal Methods. https://doi.org/10.1039/C7AY00295E

    Article  Google Scholar 

  42. Tavakolian E, Tashkhourian J (2018) Microchim Acta 185:456. https://doi.org/10.1007/s00604-018-2988-y

    Article  CAS  Google Scholar 

  43. Wang G-L, Jiao H-J, Liu K-L, Wu X-M, Dong Y-M, Li Z-J, Zhang C (2014) Electrochem Commun 41:47–50

    Article  Google Scholar 

  44. Wang H, Ye H, Zhang B, Zhao F, Zeng B (2018) J Phys Chem C 122:20329–20336

    Article  CAS  Google Scholar 

  45. Ibrahim I, Lim HN, Huang NM (2020) Electrochim Acta 360:137013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ratnamala or K. Chandra Babu Naidu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasheena, M., Ratnamala, A., Noorjahan, M. et al. Electrochemical sensor for detection of dopamine and tyrosine using CdS–C quantum dots modified electrode. J Appl Electrochem 53, 571–583 (2023). https://doi.org/10.1007/s10800-022-01794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01794-8

Keywords

Navigation