Skip to main content
Log in

Efficient NiO/RGO combination for high-cycling-stability supercapacitors by an alkaline hydrothermal strategy

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, NiO/reduced graphene oxide (NiO/RGO) composites were synthesized, and the strong bonding between NiO and RGO stemmed from alkaline hydrothermal treatment and calcination in air. NiO nanoparticles were coated on RGO to avoid volume expansion during electrochemical processes. Due to the high electron transfer rate of RGO and the effective bonding of NiO nanoparticles to RGO, the NiO/RGO composites show a high specific capacity of 68.9 mAh g−1 at 1 A g−1 and an excellent cycling stability of 86.7% after 1000 cycles at 1 A g−1. In general, this work offers an attractive route to synthesize NiO/RGO composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu QC, Zhao DY, Cheng MY, Zhou JQ, Owusu KA, Mai LQ, Yu Y (2019) A new view of supercapacitors: integrated supercapacitors. Adv Energy Mater 9:1901081

    Article  Google Scholar 

  2. Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825

    Article  CAS  Google Scholar 

  3. Gao JS, Liu Z, Lin Y, Tang Y, Lian T, He Y (2020) NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor. Chem Eng J 388:124368

    Article  CAS  Google Scholar 

  4. Velasco A, Ryu YK, Bosca A, Ladrón-de-Guevara A, Hunt E, Zuo JH, Pedrós J, Calle F, Martinez J (2021) Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustain Energy Fuels 5:1235–1254

    Article  CAS  Google Scholar 

  5. Qin HL, Liu P, Chen CR, Cong HP, Yu SH (2021) A multi-responsive healable supercapacitor. Nat Commun 12:4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang YG, Xia YY (2006) Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta 51:3223–3227

    Article  CAS  Google Scholar 

  7. Xu XB, Liu ZH, Zuo ZZ, Zhang M, Zhao ZX, Shen Y, Zhou HP, Chen Q, Yang Y, Wang M (2015) Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett 15:2402–2408

    Article  CAS  PubMed  Google Scholar 

  8. Gao JS, Li S, Wang H, Zhou Y, Zhang L, Liu Z, He Y (2021) Carbon nanotubes aerogels dispersed by thermal excitation on Ni Foam@NiCo2O4 nanoneedles with enhanced properties for supercapacitor. J Alloy Compd 861:157963

    Article  CAS  Google Scholar 

  9. Xu JH, Wu L, Liu Y, Zhang JF, Liu JM, Shu SS, Kang X, Song QG, Liu D, Huang F, Hu Y (2020) NiO-rGO composite for supercapacitor electrode. Surf Interfaces 18:100420

    Article  CAS  Google Scholar 

  10. Wang XJ, Xia XA, Meng WJ, Yang CX, Guo MQ, Zhao Y, Yang FQ (2018) Hierarchical NiO microflowers for high performance supercapacitors. J Electron Mater 47:6774–6780

    Article  CAS  Google Scholar 

  11. Mirzaee M, Dehghanian C, Sarbishei S (2018) Facile synthesis of nano dendrite-structured Ni-NiO foam/ERGO by constant current method for supercapacitor applications. J Appl Electrochem 48:923–935

    Article  CAS  Google Scholar 

  12. Arunpandiyan S, Raja A, Bharathi S, Arivarasan A (2021) Fabrication of ZnO/NiO:rGO coated Ni foam binder-free electrode via hydrothermal method for supercapacitor application. J Alloy Compd 883:160791

    Article  CAS  Google Scholar 

  13. Bai Y, Du M, Chang J, Sun J, Gao L (2014) Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes. J Mater chem A 2:3834–3840

    Article  CAS  Google Scholar 

  14. Yu W, Li BQ, Ding SJ (2016) Electroless fabrication and supercapacitor performance of CNT@NiO-nanosheet composite nanotubes. Nanotehnology 27:075605

    Article  CAS  Google Scholar 

  15. Wen B, Zhang S, Fang H (2011) Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. Rare Met 30(1):661–665

    Article  CAS  Google Scholar 

  16. Tian SY, Zheng GX, Liu Q, Ren MY, Yin JH (2019) Preparation of RGO/NiO anode for lithium-ion batteries. Int J Electrochem Sc 14:9459–9467

    Article  CAS  Google Scholar 

  17. Jiang LL, Tu SH, Xue K, Yu HT, Hou XG (2021) Preparation and gas-sensing performance of GO/SnO2/NiO gas-sensitive composite materials. Ceram Int 47:7528–7538

    Article  CAS  Google Scholar 

  18. Ren HB, Gu CP, Joo SW, Zhao JJ, Sun YF, Huang JR (2018) Effective hydrogen gas sensor based on NiO@rGO nanocomposite. Sens Actuat B Chem 266:506–513

    Article  CAS  Google Scholar 

  19. Hwang SG, Kim GO, Ryu KS (2012) NiO nanoparticles with plate structure grown on graphene as fast charge-discharge anode material for lithium ion batteries. Elecctrochim Acta 78:406–411

    Article  CAS  Google Scholar 

  20. Jiang SH, Ding J, Wang RH, Chen FY, Sun J, Deng YX, Li XL (2021) Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met 40(12):3520–3530

    Article  CAS  Google Scholar 

  21. Wu MS, Lin YP, Lin CH, Lee JT (2012) Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors. J Mater Chem 22:2442–2448

    Article  CAS  Google Scholar 

  22. Wu CH, Deng SX, Wang H, Sun YX, Liu JB, Yan H (2014) Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications. ACS Appl Mater Inter 6:1106–1112

    Article  CAS  Google Scholar 

  23. Chen YM, Huang ZD, Zhang HY, Chen YT, Cheng ZD, Zhong YB, Ye YP, Lei XL (2014) Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors. Int J Hydrogen Energy 39:16171–16178

    Article  CAS  Google Scholar 

  24. Kahimbi H, Hong SB, Yang MH, Choi BG (2017) Simultaneous synthesis of NiO/reduced graphene oxide composites by ball milling using bulk Ni and graphite oxide for supercapacitor applications. J Electroanal Chem 786:14–19

    Article  CAS  Google Scholar 

  25. Ge CY, Hou ZH, He BH, Zeng FY, Cao JG, Liu YM, Kuang YF (2012) Three-dimensional flower-like nickel supported on graphene sheets as electrode material for supercapacitors. J Sol–Gel Sci Technol 63:146–152

    Article  CAS  Google Scholar 

  26. Bai YC, Rakhi RB, Chen W, Alshareef HN (2013) Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J Power Sources 233:313–319

    Article  CAS  Google Scholar 

  27. Kamyabi MA, Mohammadian H, Jadali S, Moharramnezhad M (2019) Hydrothermal syntheses of NiO-GO nanocomposite on 3D nickel foam as a support for Pt nanoparticles and its superior electrocatalytic activity towards methanol oxidation. Electroanalysis 31:1501–1510

    Article  CAS  Google Scholar 

  28. Chu M, Wang L, Li X, Hou MJ, Li N, Dong YZ, Li XZ, Xie ZZ, Lin YW, Cai WQ (2018) Carbon coated nickel-Nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim Acta 264:284–291

    Article  CAS  Google Scholar 

  29. Pichaikaran S, Pandurangan A (2017) Rh/Ni wet-impregnated Ia3d mesostructured aluminosilicate and r-GO catalysts for hydrodeoxygenation of phenoxybenzene. New J Chem 41:7893–7903

    Article  CAS  Google Scholar 

  30. Rajesh D, Neel PL, Pandurangan A, Mahendiran C (2018) Pd–NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium. Appl Surf Sci 422:787–796

    Article  Google Scholar 

  31. Zareyy B, Chekin F, Fathi S (2019) NiO/Porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction. Russ J Electrochem 55:333–338

    Article  CAS  Google Scholar 

  32. Xu J, Wu L, Liu Y, Zhang J, Liu J, Shu S, Kang X, Song Q, Liu D, Huang F, Hu Y (2020) NiO-rGO composite for supercapacitor electrode. Surf Interfaces 18:100420

    Article  CAS  Google Scholar 

  33. Vaizogullar AI (2020) Facile preparation and characterization of NiO/Ni2O3-decorated nanoballs and mixed phase CdS nano rods (CdS&NiO/Ni2O3) for effective photocatalytic decomposition of Congo red under visible light irradiation. J Disper Sci Technol 42:1408–1418

    Article  Google Scholar 

  34. Gandhi AC, Cheng HY, Chang YM, Lin JG (2016) Size confined magnetic phase in NiO nanoparticles. Mater Res Express 3:035017

    Article  Google Scholar 

  35. Yan ZQ, Gao JS, Zhang XT, Nan F, He Y (2019) Acid reduction of graphene oxide and performance of supercapacitor. CIESC J 70:4881–4888

    CAS  Google Scholar 

  36. Jana M, Saha S, Samanta P, Murmu NC, Kim NH, Kuila T, Lee JH (2017) A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application. J Power Sources 340:380–392

    Article  CAS  Google Scholar 

  37. Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27(32):4695–4701

    Article  CAS  PubMed  Google Scholar 

  38. Meng A, Yuan XC, Shen T, Li ZJ, Jiang QY, Xue HY, Lin YS, Zhao J (2019) One-step synthesis of flower-like Bi2O3/Bi2Se3 nanoarchitectures and NiCoSe2/Ni0.85Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries. J Mater Chem A 7:17613–17625

    Article  CAS  Google Scholar 

  39. Gao J, Lian T, Liu Z, He Y (2022) 2D@3D MoS2@Ni/Co–S submicroboxes derived from prussian blue analogues for high performance supercapacitors. J Alloy Compd 901:163558

    Article  CAS  Google Scholar 

  40. Li Q, Wang ZM, Zhang YT, Hu P, Wang T, Yun F (2019) Indium tin oxide nanowires as voltage self-stabilizing supercapacitor electrodes. J Mater Res 34:3195–3203

    Article  CAS  Google Scholar 

  41. Gao J, Zhou Y, Liu Z, Wang H, He Y (2022) NiCo–Se nanoparticles encapsulated N-doped CNTs derived from Prussian blue analogues for high performance supercapacitors. Electrochim Acta 411:140064

    Article  CAS  Google Scholar 

  42. Mohamed IMA, Yasin AS, Liu CK (2020) Synthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceram Int 46:3912–3920

    Article  CAS  Google Scholar 

  43. Bandyopadhyay P, Kuila T, Balamurugan J, Nguyen TT, Kim NH, Lee JH (2017) Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chem Eng J 308:1174–1184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (China) (Grant Nos. 52176076, 51676103), Taishan Scholar Project of Shandong Province (China) (Grant No. ts20190937), Natural Science Foundation of Shandong Province (China) (No. ZR2021QE007), and the Collaborative Innovation Center of Intelligent Green Manufacturing Technology and Equipment, Shandong (China) (No. IGCD-2020-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, JS., Lian, T., Liu, Z. et al. Efficient NiO/RGO combination for high-cycling-stability supercapacitors by an alkaline hydrothermal strategy. J Appl Electrochem 52, 1045–1052 (2022). https://doi.org/10.1007/s10800-022-01694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01694-x

Keywords

Navigation