Skip to main content
Log in

Study of the influence of the preparation method on the electrochemical dissolution behavior of Inconel 718

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In order to investigate the influence of the preparation method on the electrochemical dissolution behavior of the typical superalloy Inconel 718, we employed various test methods to determine the composition and structure of the passive film. Test results show that the film is mainly composed of Cr2O3 and NiO, which have an obvious impact on the electrochemical and physical properties of the surface. The electrochemical machining experiments indicate that wrought Inconel 718 contains large amounts of pitting and selective corrosion, while hot-rolled Inconel 718 exhibits finer grains and a more uniform distribution, which results in a more even dissolution and a better surface quality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data recorded/measured during this research are available from the corresponding author on reasonable request.

References

  1. Rahman M, Seah WKH, Teo TT (1997) The machinability of inconel 718. J Mater Process Technol 63:199–204

    Article  Google Scholar 

  2. Damodaram R, Raman SGS, Satyanarayana DVV, Reddy GM, Rao KP (2014) Hot tensile and stress rupture behavior of friction welded alloy 718 in different pre-and post-weld heat treatment conditions. Mater Sci Eng A 612:414–422. https://doi.org/10.1016/j.msea.2014.06.076

    Article  CAS  Google Scholar 

  3. Karabela A, Zhao LG, Tong J, Simms NJ, Nicholls JR, Hardy MC (2011) Effects of cyclic stress and temperature on oxidation damage of a nickel-based superalloy. Mater Sci Eng A 528:6194–6202. https://doi.org/10.1016/j.msea.2011.04.029

    Article  CAS  Google Scholar 

  4. Fujisawa T, Inaba K, Yamamoto M, Kato D (2008) Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. J Fluids Eng 130:081602. https://doi.org/10.1115/1.2956596

    Article  CAS  Google Scholar 

  5. Klocke F, Zeis M, Klink A (2012) Technological and economical capabilities of manufacturing titanium- and nickel-based alloys via Electrochemical Machining (ECM). In: Merklein M, Hagenah H (eds) Material Forming—Esaform 2012, Pts 1 & 2. Trans Tech Publications Ltd, Zurich, pp 1237–1242. https://doi.org/10.4028/www.scientific.net/KEM.504-506.1237

    Chapter  Google Scholar 

  6. Rajurkar KP, Zhu D, McGeough JA, Kozak J, Silva AD (1999) New developments in electro-chemical machining. CIRP Ann. https://doi.org/10.1016/S0007-8506(07)63235-1

    Article  Google Scholar 

  7. Xu ZY, Xu Q, Zhu D, Gong T (2013) A high efficiency electrochemical machining method of blisk channels. CIRP Ann 62:187–190. https://doi.org/10.1016/j.cirp.2013.03.068

    Article  Google Scholar 

  8. Zhang JC, Xu ZY, Zhu D, Su WF, Zhu D (2017) Study of tool trajectory in blisk channel ECM with spiral feeding. Mater Manuf Processes 32:333–338. https://doi.org/10.1080/10426914.2016.1151040

    Article  CAS  Google Scholar 

  9. Zhang SL, Liu JR, Lin X, Huang YH, Wang M, Zhang YF, Qin T, Huang WD (2021) Effect of electrolyte solutions on the electrochemical dissolution behavior of additively manufactured Hastelloy X superalloy via laser solid forming. J Alloys Compd 878:160395. https://doi.org/10.1016/j.jallcom.2021.160395

    Article  CAS  Google Scholar 

  10. Zhou F, Duan W, Li X, Tsai J-T, Jun MBG (2021) High precision in-situ monitoring of electrochemical machining process using an optical fiber Fabry-Pérot interferometer sensor. J Manuf Mater Process 68:180–188. https://doi.org/10.1016/j.jmapro.2021.07.010

    Article  Google Scholar 

  11. Wang DY, Zhu ZW, Wang NF, Zhu D, Wang HR (2015) Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution. Electrochim Acta 156:301–307. https://doi.org/10.1016/j.electacta.2014.12.155

    Article  CAS  Google Scholar 

  12. Wang ML, Qu NS (2020) Electrochemical dissolution behavior of S-04 high-strength stainless steel in NaNO3 aqueous solution. J Appl Electrochem 50:1149–1163. https://doi.org/10.1007/s10800-020-01469-2

    Article  CAS  Google Scholar 

  13. Feng SN, Gong JH, Li HX, Wang HR (2018) Effect of heat treatment process on hardness and corrosion resistance of GH4169. Mater Sci Eng 452:022089. https://doi.org/10.1088/1757-899X/452/2/022089

    Article  Google Scholar 

  14. Yang J, Wu J, Zhang CY, Zhang SD, Yang BJ, Emori W, Wang JQ (2020) Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution. J Alloys Compd 819:152943. https://doi.org/10.1016/j.jallcom.2019.152943

    Article  CAS  Google Scholar 

  15. Wang Y, Xu Z, Zhang A (2020) Anodic characteristics and electrochemical machining of two typical γ-TiAl alloys and its quantitative dissolution model in NaNO3 solution. Electrochim Acta 331:135429. https://doi.org/10.1016/j.electacta.2019.135429

    Article  CAS  Google Scholar 

  16. Tang Y, Xu ZY (2018) The electrochemical dissolution characteristics of GH4169 nickel base super alloy in the condition of electrochemical machining. Int J Electrochem Sci 13:1105–1119. https://doi.org/10.20964/2018.01.75

    Article  CAS  Google Scholar 

  17. Yang FF, Kang HJ, Chen ZN, Guo EY, Zeng YY, Wang W, Wang TM (2019) Electrochemical corrosion mechanisms of nickel-aluminium bronze with different nickel contents using the rotating disc electrode. Corros Sci 157:438–449. https://doi.org/10.1016/j.corsci.2019.06.018

    Article  CAS  Google Scholar 

  18. El-Taib HF, Ghoneim AA, Mogoda AS, Awad K (2011) Electrochemical behaviour of Ti-6Al-4V alloy and Ti in azide and halide solutions. Corros Sci 53:2728–2737. https://doi.org/10.1016/j.corsci.2011.05.003

    Article  CAS  Google Scholar 

  19. Haisch T, Mittemeijer E, Schultze JW (2001) Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides. Electrochim Acta 47:235–241

    Article  CAS  Google Scholar 

  20. Schneide MR, Schuber NT, Hoehn S, Michaelis A (2013) Anodic dissolution behaviour and surface texture development of cobalt under electrochemical machining conditions. Electrochim Acta 106:279–287. https://doi.org/10.1016/j.electacta.2013.05.070

    Article  CAS  Google Scholar 

  21. Kadowaki M, Muto I, Takahashi K, Doi T, Masuda H, Katayama H, Kawano K, Sugawara Y, Hara N (2019) Anodic Polarization Characteristics and Electrochemical Properties of Fe3C in Chloride Solutions. J Electrochem Soc C 166:345–351. https://doi.org/10.1149/2.1311912jes

    Article  CAS  Google Scholar 

  22. Hosseini E, Popovich VA (2019) A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30:100877. https://doi.org/10.1016/j.addma.2019.100877)100877)100877

    Article  CAS  Google Scholar 

  23. Tabaie S, Rézaï-Aria F, Flipo BCD, Jahazi M (2022) Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: evolution of strengthening phases. J Mater Sci Technol 96:248–261. https://doi.org/10.1016/j.jmst.2021.03.086

    Article  Google Scholar 

  24. Chen Z, Zhang G, Yang E-H (2018) Study of steel corrosion in strain-hardening cementitious composites (SHCC) via electrochemical techniques. Electrochim Acta 261:402–411. https://doi.org/10.1016/j.electacta.2017.12.170

    Article  CAS  Google Scholar 

  25. Wang MQ, Zhou ZH, Wang QJ, Wang ZH, Zhang X, Liu YY (2019) Role of passive film in dominating the electrochemical corrosion behavior of FeCrMoCBY amorphous coating. J Alloys Compd 811:151962. https://doi.org/10.1016/j.jallcom.2019.151962

    Article  CAS  Google Scholar 

  26. Liao CJ, Liu Q, Ma XZ, Liu JH (2019) relationship between surface heterogeneity and electrochemical interface behavior of the TiAl alloy electrode. J Phys Chem C 123:473–484. https://doi.org/10.1021/acs.jpcc.8b09123

    Article  CAS  Google Scholar 

  27. Huang J, Li Z, Liaw BY, Zhang J (2016) Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. J Power Sources 309:82–98. https://doi.org/10.1016/j.jpowsour.2016.01.073

    Article  CAS  Google Scholar 

  28. Deutsch (2020) Electrochemical Impedance Spectroscopy and its Applications. Springer, New York. https://doi.org/10.1007/978-1-4614-8933-7

    Book  Google Scholar 

  29. Poddar C, Ningshen S, Jayaraj J (2020) Corrosion assessment of Ni-60 Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment. J Alloys Compd 813:152172. https://doi.org/10.1016/j.jallcom.2019.152172

    Article  CAS  Google Scholar 

  30. Obeydavi A, Shafyei A, Rezaeian A, Kameli P, Lee J-W (2020) Microstructure mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering. J Non-Cryst Solids 527:119718. https://doi.org/10.1016/j.jnoncrysol.2019.119718

    Article  CAS  Google Scholar 

  31. Liu L, Li Y, Wang FH (2007) Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl. Electrochim Acta 52:7193–7202. https://doi.org/10.1016/j.electacta.2007.05.043

    Article  CAS  Google Scholar 

  32. Lu YS, Lu CW, Lin YT, Yen HW, Lee YL (2020) Corrosion behavior and passive film characterization of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy in sulfuric acid solution. J Electrochem Soc 167:081506. https://doi.org/10.1149/1945-7111/ab8de4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (Grant No. 2008085QE250); the Natural Science Foundation of Jiangsu Province (Grant No. BK20190419); and the China Postdoctoral Science Foundation (Grant No. 2018M642246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juchen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Song, S., Li, X. et al. Study of the influence of the preparation method on the electrochemical dissolution behavior of Inconel 718. J Appl Electrochem 52, 1149–1162 (2022). https://doi.org/10.1007/s10800-022-01693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01693-y

Keywords

Navigation