Skip to main content
Log in

Photoelectrochemical conversion of CO2 using nanostructured PbS–Si Photocathode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A n-type nanostructured PbS thin films were prepared by chemical bath deposition onto flat Silicon (Si) and Silicon nanowires (SiNWs) which were derived from electroless etching of Si substrates. The morphological characterization was carried out by scanning electron microscopy (SEM), while the optical properties were studied using Ultraviolet–Visible Spectroscopy (UV–Vis). The catalytic activity was studied by linear sweap voltammetry (LSV) in dark and under white light irradiation using potentiostat station. Cyclic voltammetry in presence and without purging CO2 was also conducted. The LSV investigations showed the coupling effect between PbS thin films and Si for the rising and transport of the charge carriers. The results showed a higher photocatalytic activity toward CO2 reduction of PbS/SiNWs compared to Silicon substrate without any surface modification and sensitization. The electrode based on PbS/SiNWs/Si could efficiently be used as photocathode for the PEC reduction of CO2 to Methanol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

My manuscript and associated personal data.

References

  1. Xiao Y, Qian Y, Chen A, Qin T, Zhang F, Tang H, Qiu Z, Lin BL (2020) An artificial photosynthetic system with CO2-reducing solar-to-fuel efficiency exceeding 20%. J Mater Chem A. https://doi.org/10.1039/D0TA06714H

    Article  Google Scholar 

  2. Kamiya K, Fujii K, Sugiyama M, Nakanishi S (2021) CO2 electrolysis in integrated artificial photosynthesis systems. Chem Lett. https://doi.org/10.1246/cl.200691

    Article  Google Scholar 

  3. Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim Y, Wu YA, Liu Y, Wen J, Rajh T, Niklas J, Poluektov OG, Laible PD, Rozhkova EA (2019) Semi-artificial photosynthetic CO2 reduction through purple membrane re-engineering with semiconductor. J Am Chem Soc. https://doi.org/10.1021/jacs.9b05564

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allam D, Cheknoun S, Hocine S (2019) Operating conditions and composition effect on the hydrogenation of carbon dioxide performed over CuO/ZnO/Al2O3 catalysts. Bull Chem React Eng Cat. https://doi.org/10.9767/bcrec.14.3.3451.604-613

    Article  Google Scholar 

  5. Ampelli C, Genovese C, Errahali M (2015) CO2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers. J Appl Electrochem. https://doi.org/10.1007/s10800-015-0847-7

    Article  Google Scholar 

  6. Rajeshwar K (1985) Materials aspects of photoelectrochemical energy conversion. J Appl Electrochem. https://doi.org/10.1007/BF00617736

    Article  Google Scholar 

  7. Parsapur RK, Chatterjee S, Huang KW (2020) The insignificant role of dry reforming of methane in CO2 emission relief. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.0c01635

    Article  Google Scholar 

  8. Noue T, Fujishima A, Konishi S (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature. https://doi.org/10.1038/277637a0

    Article  Google Scholar 

  9. Bockris JOM, Wass JC (1989) The photoelectrocatalytic reduction of carbon dioxide. J Electrochem Soc. https://doi.org/10.1149/1.2097455

    Article  Google Scholar 

  10. Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2014) Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol. https://doi.org/10.1021/es500364g

    Article  PubMed  Google Scholar 

  11. Xie S, Zhang Q, Liu G, Wang Y (2016) Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun. https://doi.org/10.1039/C5CC07613G

    Article  Google Scholar 

  12. Chen P, Zhang Y, Zhou Y, Dong F (2021) Photoelectrocatalytic carbon dioxide reduction: fundamental, advances and challenges. Nano Mater Sci. https://doi.org/10.1016/j.nanoms.2021.05.003

    Article  Google Scholar 

  13. Wang L, Wei Y, Fang R, Wang J, Yu X, Chen J, Jing H (2020) Photoelectrocatalytic CO2 reduction to ethanol via graphite-supported and functionalized TiO2 nanowires photocathode. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2020.112368

    Article  Google Scholar 

  14. Ueda Y, Takeda H, Yui T, Koike K, Goto Y, Inagaki S, Ishitani O (2015) A visible-light harvesting system for CO2 reduction using a Ru(II) -Re(I) photocatalyst adsorbed in mesoporous organosilica. Chemsuschem. https://doi.org/10.1002/cssc.201403194

    Article  PubMed  Google Scholar 

  15. Yadav RK, Lee JO, Kumar A, Park NJ, Yadav D, Kim JY, Baeg JO (2018) Highly improved solar energy harvesting for fuel production from CO2 by a newly designed graphene film photocatalyst. Sci Rep. https://doi.org/10.1038/s41598-018-35135-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Proppe AH, Li YC, Guzik AA, Berlinguette CP, Chang CJ, Cogdell R, Doyle AG, Flick J, Gabor NM, Van Grondelle R, Schiffer SH, Jaffer SA, Kelley SO, Leclerc M, Leo K, Mallouk TE, Narang P, Schlau-Cohen GS, Scholes GD, Vojvodic A, Wing-Wah Yam V, Yang JY, Sargent EH (2020) Bioinspiration in light harvesting and catalysis. Nat Rev Mater. https://doi.org/10.1038/s41578-020-0222-0

    Article  Google Scholar 

  17. Xie B, Lovell E, Hao Tan T, Jantarang S, Yu M, Scott J, Amal R (2021) Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J Energy Chem. https://doi.org/10.1016/j.jechem.2020.11.005

    Article  Google Scholar 

  18. Mo Y, Wang C, Xiao L, Chen W, Lu W (2021) Artificial light-harvesting 2D photosynthetic system with iron phthalocyanine/graphitic carbon nitride composites for highly efficient CO2 reduction. Catal Sci Technol. https://doi.org/10.1039/D1CY00858G

    Article  Google Scholar 

  19. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J Solid State Electrochem 19:1359–1366. https://doi.org/10.1007/s10008-015-2758-2

    Article  CAS  Google Scholar 

  20. Momeni MM, Mozafari AA (2016) The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films. J Mater Sci: Mater Electron 27:10658–10666. https://doi.org/10.1007/s10854-016-5163-4

    Article  CAS  Google Scholar 

  21. Momeni MM, Ghayeb Y, Akbarnia M et al (2020) Successive ionic layer adsorption and reaction (SILAR) deposition of nickel sulfide on the Fe2O3 nanotube for efficient photocathodic protection of stainless steel under visible light. J Iran Chem Soc 17:3367–3374. https://doi.org/10.1007/s13738-020-01992-1

    Article  CAS  Google Scholar 

  22. Ghayeb Y, Momeni MM, Mozafari A (2016) Effect of silver sulfide decorating on structural, optical and photocatalytic properties of iron-doped titanium dioxide nanotubes films. J Mater Sci: Mater Electron 27:11804–11813. https://doi.org/10.1007/s10854-016-5321-8

    Article  CAS  Google Scholar 

  23. Momeni MM, Taghinejad M, Ghayeb Y, Bagheri R, Song Z (2020) High-efficiency photoelectrochemical cathodic protection performance of the iron-nitrogen-sulfur-doped TiO2 nanotube as new efficient photoanodes. Mater Res Express 7:086403. https://doi.org/10.1088/2053-1591/abaea1

    Article  CAS  Google Scholar 

  24. Momeni MM, Ghayeb Y, Hallaj A, Bagheri R, Song Z, Farrokhpour H (2019) Photoelectrochemical performances of Fe2O3 nanotube films decorated with cadmium sulfide nanoparticles via photo deposition method. Physica B 554:57–63. https://doi.org/10.1016/j.physb.2018.11.048

    Article  CAS  Google Scholar 

  25. Zhang N, Long R, Gao C, Xiong Y (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater. https://doi.org/10.1007/s40843-017-9151-y

    Article  Google Scholar 

  26. Latempa TJ, Rani S, Bao N (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowirell n-TiO2 nanotube array photoelectrochemical cell. Nanoscale. https://doi.org/10.1039/c2nr00052k

    Article  PubMed  Google Scholar 

  27. Beeman JW, Bullock J, Wang H, Eichhorn J, Towle C, Javey A, Toma FM, Mathews N, Ager JW (2019) Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ Sci. https://doi.org/10.1039/C8EE03547D

    Article  Google Scholar 

  28. Ding P, Hu Y, Deng J, Chen J, Zha C, Yang H, Han N, Gong Q, Li L, Wang T, Zhao X, Li Y (2019) Controlled chemical etching leads to efficient silicone bismuth interface for photoelectrochemical CO2 reduction to formate. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2018.10.009

    Article  Google Scholar 

  29. Hu YP, Chen FJ, Ding P, Yang H, Chen JM, Zha CY, Li YG (2018) Designing effective Si/Ag interface via controlled chemical etching for photoelectrochemical CO2 reduction. J Mater Chem A. https://doi.org/10.1039/C8TA05420G

    Article  Google Scholar 

  30. Choi SK, Kang U, Lee S (2014) Sn-coupled p-Si nanowire arrays for solar formate production from CO2. Adv Energy Mater. https://doi.org/10.1002/aenm.201301614

    Article  Google Scholar 

  31. Dasog M, Kraus S, Sinelnikov R, Veinot JGC, Rieger B (2017) CO2 to methanol conversion using hydride terminated porous silicon nanoparticles. Chem Commun. https://doi.org/10.1039/C7CC00125H

    Article  Google Scholar 

  32. Kaci S, Keffous A, Trari M, Menari H, Manseri A, Mahmoudi B, Guerbous L (2010) Influence of polyethylene glycol-300 addition on nanostructured lead sulfide thin films properties. Opt Commun. https://doi.org/10.1016/j.optcom.2010.04.046

    Article  Google Scholar 

  33. Bashkany ZA, Abbas IK, Mahdi MA, Al-Taay HF, Jennings P (2018) A self-powered heterojunction photodetector based on a PbS nanostructure grown on porous silicon substrate. SILICON. https://doi.org/10.1007/s12633-016-9462-4

    Article  Google Scholar 

  34. Du K, Liu G, Chen X, Wangz K (2015) PbS quantum dots sensitized TiO2 nanotubes for photocurrent enhancement. J Electrochem Soc. https://doi.org/10.1149/2.0661510jes

    Article  Google Scholar 

  35. Carrasco-Jaim OA, Ceballos-Sanchez O, Torres-Martínez LM, Moctezuma E, Gómez-Solís C (2017) Synthesis and characterization of PbS/ZnO thin film for photocatalytic hydrogen production. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2017.07.016

    Article  Google Scholar 

  36. Shaban M, Rabia M, Abd El-Sayed AM, Ahmed A, Sayed S (2017) Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci Rep. https://doi.org/10.1038/s41598-017-14582-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhong H, Mirkovic T, Scholes GD (2011) Nanocrystal synthesis. Compr Nanosci Technol. https://doi.org/10.1016/B978-0-12-374396-1.00051-9

    Article  Google Scholar 

  38. Popov G, Bačić G, Mattinen M, Manner T, Lindström H, Seppänen H, Suihkonen S, Vehkamäki M, Kemell M, Jalkanen P, Mizohata K, Räisänen J, Leskelä M, Koivula H, Barry ST, Ritala M (2020) Atomic layer deposition of PbS thin films at low temperatures. Chem Mater. https://doi.org/10.1021/acs.chemmater.0c01887

    Article  Google Scholar 

  39. Rahmani N, Dariani RS, Rajabi M (2016) A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO2 nanorods growth. App Surf Sci. https://doi.org/10.1016/j.apsusc.2016.01.075

    Article  Google Scholar 

  40. Taherkhani M, Naderi N, Fallahazad P, Javad Eshraghi M, Kolahi A (2019) Development and optical properties of ZnO nanoflowers on porous silicon for photovoltaic applications. J Electron Mater. https://doi.org/10.1007/s11664-019-07484-0

    Article  Google Scholar 

  41. Kong Q, Kim D, Liu C, Yu Y, Su YD, Li YF, Yang PD (2016) Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction. Nano Lett. https://doi.org/10.1021/acs.nanolett.6b02321

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kaci S, Keffous A, Hakoum S, Trari M, Mansri O, Menari H (2014) Preparation of nanostructured PbS thin films as sensing element for NO2 gas. App Surf Sci. https://doi.org/10.1016/j.apsusc.2014.03.190

    Article  Google Scholar 

  43. Kaci S, Keffous A, Hakoum S, Manseri A (2015) Hydrogen sensitivity of the sensors based on nanostructured lead sulfide thin films deposited on a-SiC: H and p-Si (100) substrates. Vacuum. https://doi.org/10.1016/j.vacuum.2015.02.024

    Article  Google Scholar 

  44. Kaci S, Keffous A, Trari M, Mahmoudi B, Menari H (2011) Enhancement of blue spectral response intensity of PbS via polyethylene oxide-adding for the application to white LEDs. Adv Mater Res. https://doi.org/10.4028/www.scientific.net/AMR.227.39

    Article  Google Scholar 

  45. Moulai F, Hadjersi T, Ifires M, Khen A, Rachedi N (2019) Enhancement of electrochemical capacitance of silicon nanowires arrays (SiNWs) by modification with manganese dioxide MnO2. SILICON. https://doi.org/10.1007/s12633-019-0066-7

    Article  Google Scholar 

  46. Kaci S, Keffous A, Hakoum S, Makrani N, Kechouane M, Guerbous L (2012) Investigation of nc-PbS/a-Si1− xCx: H/pSi (1 0 0) heterostructures for LED applications. Opt Mater. https://doi.org/10.1016/j.optmat.2012.05.031

    Article  Google Scholar 

  47. Fellahi O, Barras A, Pan GH, Coffinier Y, Hadjersi T, Maamache M, Szunerits S, Boukherroub R (2016) Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2015.11.020

    Article  PubMed  Google Scholar 

  48. Hecht HG (1976) The interpretation of diffuse reflectance spectra. J Res Natl Bureau Stand A. https://doi.org/10.6028/jres.080A.056

    Article  Google Scholar 

  49. Chernyshova IV (2001) Anodic oxidation of galena (PbS) studied FTIR-spectroelectrochemically. J Phys Chem B. https://doi.org/10.1021/jp0110253

    Article  Google Scholar 

  50. Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev. https://doi.org/10.1039/C2CS35310E

    Article  PubMed  Google Scholar 

  51. Zhang Z, Liu C, Brosnahan JT, Zhou H, Xu W, Zhang S (2019) Revealing structure evolution of pbs nanocrystal catalysts in the electrochemical CO2 reduction using in situ synchrotron radiation X-ray diffraction. J Mater Chem A. https://doi.org/10.1039/C9TA06750G

    Article  Google Scholar 

  52. Zhao X, Gorelikov I, Musikhin S, Cauchi S, Sukhovatkin V, Sargent E-H, Kumacheva E (2005) Synthesis and optical properties of thiol-stabilized PbS nanocrystals. Langmuir 21:1086–1090. https://doi.org/10.1021/la048730y

    Article  CAS  PubMed  Google Scholar 

  53. Weng B, Qi MY, Han C, Tang ZR, Xu YJ (2019) Photocorrosion inhibition of semiconductor-based photocatalys: basic principle, current development, and future perspective. ACS Catal. https://doi.org/10.1021/acscatal.9b00313

    Article  Google Scholar 

  54. Paracchino A, Brauer JC, Moser JE, Thimsen E, Graetzel M (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116:7341–7350. https://doi.org/10.1021/jp301176y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Directorate General for Scientific Research and Technological Development (DGRSDT-Algeria).

Funding

There are currently no Funding Sources on the list.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

The authors consent to participate.

Consent for publication

The authors give their consent for publication.

Informed consent

Not applicable for that section.

Research involving human participants and/or animals

Not applicable for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allad, L., Allam, D., Benfadel, K. et al. Photoelectrochemical conversion of CO2 using nanostructured PbS–Si Photocathode. J Appl Electrochem 52, 835–848 (2022). https://doi.org/10.1007/s10800-022-01675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01675-0

Keywords

Navigation