Skip to main content
Log in

Investigation of oxygen evolution reaction performance of silver doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite structure

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Studies on novel electrochemical catalyst synthesis for efficient oxygen evolution reaction (OER) attract the attention of researchers. In general, changing of synthesis method and the doping metal affect the electrochemical activities of BSCF. In this work, silver doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF-Ag) perovskite structure is shown to be a better electrocatalyst for oxygen evolution reaction (OER) due to its lower overpotential and extended durability. BSCF structure was synthesized by the EDTA-citric acid method. Appropriate amount of Ba(NO3)2 and EDTA were dissolved 0.1 M NH4OH solution. Nitrate salts of other metals were dissolved in distilled water, then mixed with prepared Ba(NO3)2 solution. The mixture was stirred at 70 °C until gelation occurred. The gelled samples obtained were baked in a drying oven at 250 °C for 24 h before being calcined at 1000 °C for 12 h. To achieve a current density of 10 mA cm−2, BSCF-Ag has required an overpotential of 0.36 V, which is very low compared to BSCF. To determine the stability of BSCF-Ag, continuous chronopotentiometry tests were carried out for 5 h and at a constant current density of 10 mA cm−2. BSCF-Ag was characterized by XRD, SEM, and XPS.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303. https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  Google Scholar 

  2. Kim JS, Kim B, Kim H, Kang K (2018) Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater 8(11):1702774. https://doi.org/10.1002/aenm.201702774

    Article  CAS  Google Scholar 

  3. Li G, Chuang P-YA (2018) Identifying the forefront of electrocatalytic oxygen evolution reaction: electronic double layer. Appl Catal B 239:425–432. https://doi.org/10.1016/j.apcatb.2018.08.037

    Article  CAS  Google Scholar 

  4. Muthurasu A, Maruthapandian V, Kim HY (2019) Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl Catal B 248:202–210. https://doi.org/10.1016/j.apcatb.2019.02.014

    Article  CAS  Google Scholar 

  5. Xu X, Wang W, Zhou W, Shao Z (2018) Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2(7):1800071. https://doi.org/10.1002/smtd.201800071

    Article  CAS  Google Scholar 

  6. Sun J, Zhang Z, Gong Y, Wang H, Wang R, Zhao L, He B (2019) Plasma engraved Bi0.1(Ba0.5Sr0.5)0.9Co0.8Fe0.2O3−δ perovskite for highly active and durable oxygen evolution. Sci Rep 9(1):4210. https://doi.org/10.1038/s41598-019-40972-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086. https://doi.org/10.1039/C4CS00470A

    Article  CAS  PubMed  Google Scholar 

  8. Lyu Y-Q, Ciucci F (2017) Activating the bifunctionality of a perovskite oxide toward oxygen reduction and oxygen evolution reactions. ACS Appl Mater Interfaces 9(41):35829–35836. https://doi.org/10.1021/acsami.7b10216

    Article  CAS  PubMed  Google Scholar 

  9. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383. https://doi.org/10.1126/science.1212858

    Article  CAS  PubMed  Google Scholar 

  10. Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M (2017) A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun 8(1):14586. https://doi.org/10.1038/ncomms14586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Y, Zhou W, Chen Z-G, Chen Y, Su C, Tadé MO, Shao Z (2015) SrNb0.1Co0.7Fe0.2O3−δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew Chem Int Ed 54(13):3897–3901. https://doi.org/10.1002/anie.201408998

    Article  CAS  Google Scholar 

  12. Jung J-I, Risch M, Park S, Kim MG, Nam G, Jeong H-Y, Shao-Horn Y, Cho J (2016) Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ Sci 9(1):176–183. https://doi.org/10.1039/C5EE03124A

    Article  CAS  Google Scholar 

  13. May KJ, Carlton CE, Stoerzinger KA, Risch M, Suntivich J, Lee Y-L, Grimaud A, Shao-Horn Y (2012) Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett 3(22):3264–3270. https://doi.org/10.1021/jz301414z

    Article  CAS  Google Scholar 

  14. Xu X, Pan Y, Zhou W, Chen Y, Zhang Z, Shao Z (2016) Toward enhanced oxygen evolution on perovskite oxides synthesized from different approaches: a case study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Electrochim Acta 219:553–559. https://doi.org/10.1016/j.electacta.2016.10.031

    Article  CAS  Google Scholar 

  15. Li Z, Fu J-Y, Feng Y, Dong C-K, Liu H, Du X-W (2019) A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat Catal 2(12):1107–1114. https://doi.org/10.1038/s41929-019-0365-9

    Article  CAS  Google Scholar 

  16. Xia Y (2019) In my element: silver. Chem A Eur J 25(17):4244–4244. https://doi.org/10.1002/chem.201805675

    Article  CAS  Google Scholar 

  17. Zhou Y, Lu Q, Zhuang Z, Hutchings GS, Kattel S, Yan Y, Chen JG, Xiao JQ, Jiao F (2015) Oxygen reduction at very low overpotential on nanoporous Ag catalysts. Adv Energy Mater 5(13):1500149. https://doi.org/10.1002/aenm.201500149

    Article  CAS  Google Scholar 

  18. Liu R, Ye K, Gao Y, Zhang W, Wang G, Cao D (2015) Ag supported on carbon fiber cloth as the catalyst for hydrazine oxidation in alkaline medium. Electrochim Acta 186:239–244. https://doi.org/10.1016/j.electacta.2015.10.126

    Article  CAS  Google Scholar 

  19. Zhuang S, Huang K, Huang C, Huang H, Liu S, Fan M (2011) Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium. J Power Sour 196(8):4019–4025. https://doi.org/10.1016/j.jpowsour.2010.11.056

    Article  CAS  Google Scholar 

  20. Ananth MV, Manimaran K, Arul Raj I, Sureka N (2007) Influence of air electrode electrocatalysts on performance of air-MH cells. Int J Hydrogen Energy 32(17):4267–4271. https://doi.org/10.1016/j.ijhydene.2007.06.008

    Article  CAS  Google Scholar 

  21. Wagner N, Schulze M, Gülzow E (2004) Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources 127(1):264–272. https://doi.org/10.1016/j.jpowsour.2003.09.022

    Article  CAS  Google Scholar 

  22. Zhang Y, Liu J, Huang X, Lu Z, Su W (2008) Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing. Solid State Ionics 179(7):250–255. https://doi.org/10.1016/j.ssi.2008.02.008

    Article  CAS  Google Scholar 

  23. Liang F, Zhou W, Li J, Zhu Z (2013) Microwave-plasma induced reconstruction of silver catalysts for highly efficient oxygen reduction. J Mater Chem A 1(44):13746–13749. https://doi.org/10.1039/C3TA13656F

    Article  CAS  Google Scholar 

  24. Park CY, Lee TH, Dorris SE, Park JH, Balachandran U (2012) Ethanol reforming using Ba0.5Sr0.5Cu0.2Fe0.8O3−δ/Ag composites as oxygen transport membranes. J Power Sources 214:337–343. https://doi.org/10.1016/j.jpowsour.2012.04.052

    Article  CAS  Google Scholar 

  25. quot, Chatrchyan S, quot, quot, Khachatryan V, quot, quot, Sirunyan AM, quot, quot, Collaboration: The CMS, Collaborations T, quot, quot, others a, quot Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at √(s) = 8 TeV by the CMS and TOTEM experiments. https://doi.org/10.1140/EPJC/S10052-014-3053-6

  26. Mosiałek M, Michna A, Dziubaniuk M, Bielańska E, Kežionis A, Šalkus T, Kazakevičius E, Bożek B, Krawczyk A, Wyrwa J, Orliukas AF (2018) Composite cathode material LSCF-Ag for solid oxide fuel cells obtained in one step sintering procedure. Electrochim Acta 282:427–436. https://doi.org/10.1016/j.electacta.2018.06.063

    Article  CAS  Google Scholar 

  27. Zhu WX, Lü Z, Wang LX, Guan XY, Zhang XY (2011) Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ag composite cathode materials for IT-SOFCs. Adv Mater Res 311–313:2309–2314. https://doi.org/10.4028/www.scientific.net/AMR.311-313.2309

    Article  CAS  Google Scholar 

  28. Zhou W, Ran R, Shao Z, Cai R, Jin W, Xu N, Ahn J (2008) Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition. Electrochim Acta 53(13):4370–4380. https://doi.org/10.1016/j.electacta.2008.01.058

    Article  CAS  Google Scholar 

  29. Leo A, Liu S, Diniz da Costa JC (2009) The enhancement of oxygen flux on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) hollow fibers using silver surface modification. J Membr Sci 340(1):148–153. https://doi.org/10.1016/j.memsci.2009.05.022

    Article  CAS  Google Scholar 

  30. Yusop UA, Huai TK, Rahman HA, Baharuddin NA, Raharjo J (2020) Electrochemical performance of barium strontium cobalt ferrite -samarium doped ceria- argentum for low temperature solid oxide fuel cell. Mater Sci Forum 991:94–100. https://doi.org/10.4028/www.scientific.net/MSF.991.94

    Article  Google Scholar 

  31. Lin Y, Ran R, Shao Z (2010) Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ as cathodes for a proton conducting solid-oxide fuel cell. Int J Hydrogen Energy 35(15):8281–8288. https://doi.org/10.1016/j.ijhydene.2009.12.017

    Article  CAS  Google Scholar 

  32. Felix C, Bladergroen BJ, Linkov V, Pollet BG, Pasupathi S (2019) Ex-situ electrochemical characterization of IrO2 synthesized by a modified adams fusion method for the oxygen evolution reaction. Catalysts 9(4):318

    Article  Google Scholar 

  33. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  PubMed  Google Scholar 

  34. Wen Y, Zhang C, He H, Yu Y, Teraoka Y (2007) Catalytic oxidation of nitrogen monoxide over La1−xCexCoO3 perovskites. Catal Today 126(3):400–405. https://doi.org/10.1016/j.cattod.2007.06.032

    Article  CAS  Google Scholar 

  35. Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B-J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers KE, Schmidt TJ (2017) Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater 16:925. https://doi.org/10.1038/nmat4938. https://www.nature.com/articles/nmat4938#supplementary-information

  36. Norman C, Leach C (2011) In situ high temperature X-ray photoelectron spectroscopy study of barium strontium iron cobalt oxide. J Membr Sci 382(1):158–165. https://doi.org/10.1016/j.memsci.2011.08.006

    Article  CAS  Google Scholar 

  37. Xu X, Chen Y, Zhou W, Zhu Z, Su C, Liu M, Shao Z (2016) A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv Mater 28(30):6442–6448. https://doi.org/10.1002/adma.201600005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to EAE Corporate and Siz+ Company and Mr. Yusuf Hikmet Kaya for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Karabudak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göl, E.Y., Aytekin, A., Özkahraman, E.E. et al. Investigation of oxygen evolution reaction performance of silver doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite structure. J Appl Electrochem 50, 1037–1043 (2020). https://doi.org/10.1007/s10800-020-01457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01457-6

Keywords

Navigation