Skip to main content
Log in

Revealing the inhibition effect of quaternary ammonium cations on Cu electrodeposition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The ability of various quaternary ammonium cations (QACs) to inhibit Cu electrodeposition was investigated qualitatively and quantitatively via cyclic voltammetry. With addition of the dodecyltrimethylammonium cation (DTA+) as a representative QAC in the electrolyte for Cu electrodeposition, we observed inhibition of electrochemical Cu2+ reduction through surface adsorption, regardless of the electrode material used (Cu, Ag, Au, glassy carbon, and fluorine-doped SnO2). By examining various QACs with different structures, it was determined that the hydrophobic tail of DTA+ allows it to act as an inhibitor of Cu electrodeposition. DTA+ interacts strongly with anions (sulfate, chloride), which causes the hysteresis observed in cyclic voltammograms on Cu rotating disk electrode and indicates that its inhibition function is associated with the formation of the surface aggregates of DTA+ on anion-adsorbed Cu surface. Adsorbed DTA+ reduces the surface roughness of Cu electrodeposits but is not significantly incorporated in the deposit, as confirmed by SEM, AFM, and XPS analyses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bales BL, Zana R (2002) Characterization of micelles of quaternary ammonium surfactants as reaction media I: dodeclytrimethylammonium bromide and chloride. J Phys Chem B 106(8):1926–1939. https://doi.org/10.1021/jp013813y

    Article  CAS  Google Scholar 

  2. Brändström A (1977) Principles of phase-transfer catalysis by quaternary ammonium salts. In: Gold V, Bethel D (eds) Advances in physical organic chemistry. Academic Press, Massachusetts, pp 267–330

    Google Scholar 

  3. Eliadis ED, Alkire RC (1998) In situ studies of Cu deposition in the presence of quaternary ammonium salts. J Electrochem Soc 145(4):1218–1226. https://doi.org/10.1149/1.1838442

    Article  CAS  Google Scholar 

  4. Dow W-P, Huang H-S, Yen M-Y, Huang H-C (2005) Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. J Electrochem Soc 152(6):C425–C434. https://doi.org/10.1149/1.1901670

    Article  CAS  Google Scholar 

  5. Kim S-K, Josell D, Moffat TP (2006) Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling. J Electrochem Soc 153(12):C826–C833. https://doi.org/10.1149/1.2354456

    Article  CAS  Google Scholar 

  6. Hatch JJ, Willey MJ, Gewirth AA (2011) Influence of aromatic functionality on quaternary ammonium levelers for Cu plating. J Electrochem Soc 158(6):D323–D329. https://doi.org/10.1149/1.3575636

    Article  CAS  Google Scholar 

  7. Wang W, Hua H, Yin L, He Y (2014) Influence of the hydrophobic groups on quaternary ammonium additives for copper electrodeposition. J Electrochem Soc 161(12):D651–D656. https://doi.org/10.1149/2.0381412jes

    Article  CAS  Google Scholar 

  8. Lee MH, Lee Y, Oh JH, Kim YG, Cho SK, Kim JJ (2017) Microvia filling with copper electroplated with quaternary ammonium-based leveler: the evaluation of convection-dependent adsorption behavior of the leveler. J Electrochem Soc 164(14):D1051–D1055. https://doi.org/10.1149/2.0121802jes

    Article  CAS  Google Scholar 

  9. Dow W-P, Li C-C, Su Y-C, Shen S-P, Huang C-C, Lee C, Hsu B, Hsu S (2009) Microvia filling by copper electroplating using diazine black as a leveler. Electrochim Acta 54(24):5894–5901. https://doi.org/10.1016/j.electacta.2009.05.053

    Article  CAS  Google Scholar 

  10. Zheng Z, Wu T, Zhou X (2006) The synthesis of quaternary ammonium salts from ammonium salts and dialkyl carbonate. Chem Commun 17:1864–1865. https://doi.org/10.1039/B601343K

    Article  Google Scholar 

  11. Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) Chloride ion catalysis of the copper deposition reaction. J Electrochem Soc 142(6):L87–L89. https://doi.org/10.1149/1.2044254

    Article  CAS  Google Scholar 

  12. Huynh TMT, Weiss F, Hai NTM, Reckien W, Bredow T, Fluegel A, Arnold M, Mayer D, Keller H, Broekmann P (2013) On the role of halides and thiols in additive-assisted copper electroplating. Electrochim Acta 89:537–548. https://doi.org/10.1016/j.electacta.2012.10.152

    Article  CAS  Google Scholar 

  13. Lee W-H, Byun J, Cho SK, Kim JJ (2017) Effect of Halides on Cu electrodeposit film: potential-dependent impurity incorporation. J Electrochem Soc 164(7):D493–D497. https://doi.org/10.1149/2.1541707jes

    Article  CAS  Google Scholar 

  14. Zhang Q, Yu X, Hua Y, Xue W (2015) The effect of quaternary ammonium-based ionic liquids on copper electrodeposition from acidic sulfate electrolyte. J Appl Electrochem 45(1):79–86. https://doi.org/10.1007/s10800-014-0774-z

    Article  CAS  Google Scholar 

  15. Moffat TP, Josell D (2012) Extreme bottom-up superfilling of through-silicon-vias by damascene processing: suppressor disruption, positive feedback and turing patterns. J Electrochem Soc 159(4):D208–D216. https://doi.org/10.1149/2.040204jes

    Article  CAS  Google Scholar 

  16. Josell D, Moffat TP (2016) Superconformal bottom-up nickel deposition in high aspect ratio through silicon vias. J Electrochem Soc 163(7):D322–D331. https://doi.org/10.1149/2.1151607jes

    Article  CAS  Google Scholar 

  17. Josell D, Silva M, Moffat TP (2016) Superconformal bottom-up cobalt deposition in high aspect ratio through silicon vias. J Electrochem Soc 163(14):D809–D817. https://doi.org/10.1149/2.0861614jes

    Article  CAS  Google Scholar 

  18. Ding L, Chen C, Dong Y, Cheng J, Niu Y (2019) Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system. J Appl Electrochem 49(7):715–729. https://doi.org/10.1007/s10800-019-01316-z

    Article  CAS  Google Scholar 

  19. Varvara S, Muresan L, Popescu IC, Maurin G (2003) Kinetics of copper electrodeposition in the presence of triethyl-benzyl ammonium chloride. J Appl Electrochem 33(8):685–692. https://doi.org/10.1023/a:1025069004355

    Article  CAS  Google Scholar 

  20. Chen B, Xu J, Wang L, Song L, Wu S (2017) Synthesis of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating. ACS Appl Mater Interfaces 9(8):7793–7803. https://doi.org/10.1021/acsami.6b15400

    Article  CAS  PubMed  Google Scholar 

  21. Ding L, Liu F, Cheng J, Niu Y (2018) Effects of four N-based additives on imitation gold plating. J Appl Electrochem 48(2):175–185. https://doi.org/10.1007/s10800-018-1148-8

    Article  CAS  Google Scholar 

  22. Atkin R, Craig VSJ, Wanless EJ, Biggs S (2003) Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Adv Colloid Interface Sci 103(3):219–304. https://doi.org/10.1016/S0001-8686(03)00002-2

    Article  CAS  PubMed  Google Scholar 

  23. Wei Z, Somasundaran P, Duby P (2004) Pitting Inhibition by Surfactants: effect of the charge of headgroups. J Electrochem Soc 151(6):B304–B308. https://doi.org/10.1149/1.1710517

    Article  CAS  Google Scholar 

  24. Johnson RA, Nagarajan R (2000) Modeling self-assembly of surfactants at solid/liquid interfaces. I. Hydrophobic surfaces. Colloid Surf A 167(1–2):31–46. https://doi.org/10.1016/S0927-7757(99)00481-1

    Article  Google Scholar 

  25. Manne S, Gaub HE (1995) Molecular organization of surfactants at solid–liquid interfaces. Science 270(5241):1480–1482. https://doi.org/10.1126/science.270.5241.1480

    Article  CAS  Google Scholar 

  26. Jaschke M, Butt HJ, Gaub HE, Manne S (1997) Surfactant aggregates at a metal surface. Langmuir 13(6):1381–1384. https://doi.org/10.1021/la9607767

    Article  CAS  Google Scholar 

  27. Petri M, Kolb DM, Memmert U, Meyer H (2004) Adsorption of PEG on Au(111) single-crystal electrodes and its influence on copper deposition. J Electrochem Soc 151(12):C793–C797. https://doi.org/10.1149/1.1814451

    Article  CAS  Google Scholar 

  28. Kang J, Kim CM, Yu DY, Ham YS, Cho SK, Kim JJ (2019) Octylphenol ethoxylate surfactant as a suppressor in copper electrodeposition. Trans IMF 97(1):22–27. https://doi.org/10.1080/00202967.2019.1551276

    Article  CAS  Google Scholar 

  29. Bockris JOM, Paik W-K, Genshaw MA (1970) Adsorption of anions at the solid-solution interface Ellipsometric study. J Phys Chem 74(24):4266–4275. https://doi.org/10.1021/j100718a015

    Article  CAS  Google Scholar 

  30. Magnussen OM (2002) Ordered anion adlayers on metal electrode surfaces. Chem Rev 102(3):679–726. https://doi.org/10.1021/cr000069p

    Article  CAS  PubMed  Google Scholar 

  31. Hebert KR (2005) Role of chloride ions in suppression of copper electrodeposition by polyethylene glycol. J Electrochem Soc 152(5):C283–C287. https://doi.org/10.1149/1.1878372

    Article  CAS  Google Scholar 

  32. Huerta Garrido ME, Pritzker MD (2008) Voltammetric study of the inhibition effect of polyethylene glycol and chloride ions on copper deposition. J Electrochem Soc 155(4):D332–D339. https://doi.org/10.1149/1.2837874

    Article  CAS  Google Scholar 

  33. Yang L, Radisic A, Deconinck J, Vereecken PM (2013) Modeling the bottom-up filling of through-silicon vias through suppressor adsorption/desorption mechanism. J Electrochem Soc 160(12):D3051–D3056. https://doi.org/10.1149/2.010312jes

    Article  CAS  Google Scholar 

  34. Yang H, Dianat A, Bobeth M, Cuniberti G (2017) Copper electroplating with polyethylene glycol: I. An alternative hysteresis model without additive consumption. J Electrochem Soc 164(4):D196–D203. https://doi.org/10.1149/2.1051704jes

    Article  CAS  Google Scholar 

  35. Roha D, Landau U (1990) Mass transport of leveling agents in plating: steady-state model for blocking additives. J Electrochem Soc 137(3):824–834. https://doi.org/10.1149/1.2086563

    Article  CAS  Google Scholar 

  36. Wang A-y, Chen B, Fang L, Yu J-j, Wang L-m (2013) Influence of branched quaternary ammonium surfactant molecules as levelers for copper electroplating from acidic sulfate bath. Electrochim Acta 108:698–706. https://doi.org/10.1016/j.electacta.2013.07.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Kumoh National Institute of Technology (2018-104-109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ki Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ye Yeon Cho and Da Yeong Yu equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y.E., Yu, D.Y. & Cho, S.K. Revealing the inhibition effect of quaternary ammonium cations on Cu electrodeposition. J Appl Electrochem 50, 245–253 (2020). https://doi.org/10.1007/s10800-019-01381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01381-4

Keywords

Navigation