Skip to main content
Log in

Kinetics of active zinc dissolution in concentrated KOH solutions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of zinc dissolution in concentrated potassium hydroxide solution were determined as a function of KOH concentration, amount of added ZnO, and temperature through linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The measurements were evaluated with a simplified reaction scheme in which an intermediate ZnI species is formed on the electrode surface that subsequently reacts to a soluble ZnII species. Analysis of the LSV data with a two-step Butler–Volmer kinetics showed that the transfer coefficients and the surface coverage of the intermediate are approximately constant in the entire range of operation conditions, whereas the exchange current density for the first reaction step is about five times larger than for the second step. Analysis of the dynamic EIS measurements resulted in very similar current densities than obtained from the quasi-stationary LSV method. For the first time, activation energies describing the temperature dependence of the exchange current density were also determined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Kinetic parameter (s Ω−1)

B :

Kinetic parameter (s−1)

j :

Current density (mA cm−2)

R :

Ideal gas constant (J mol−1, K−1)

R :

Resistance (Ω cm2)

T :

Temperature (K (°C))

F :

Faraday constant (C mol−1)

n :

Electron transfer number

Z :

Impedance (Ω cm2)

η :

Overpotential (V)

γ :

Surface coverage

E a :

Activation energy (kJ mol−1)

j 0 :

Exchange current density (mA cm−2)

b :

Tafel slope

α :

Transfer coefficient

k :

Reaction

overall:

Overall reaction

t :

Transient

References

  1. Mainar Aroa R, Boyano Iker, de Meatza Iratxe et al (2016) Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. Int J Energy Res 40:1032–1049. https://doi.org/10.1002/er.3499

    Article  CAS  Google Scholar 

  2. Harting K, Kunz U, Turek T (2012) Zinc-air batteries: prospects and challenges for future improvement. Z Phys Chem 226:151. https://doi.org/10.1524/zpch.2012.0152

    Article  CAS  Google Scholar 

  3. Gu P, Zheng M, Zhao Q et al (2017) Rechargeable zinc–air batteries: a promising way to green energy. J Mater Chem A 5(17):7651–7666. https://doi.org/10.1039/C7TA01693J

    Article  CAS  Google Scholar 

  4. Bockelmann M, Reining L, Kunz U et al (2017) Electrochemical characterization and mathematical modeling of zinc passivation in alkaline solutions: a review. Electrochim Acta 237:276–298. https://doi.org/10.1016/j.electacta.2017.03.143

    Article  CAS  Google Scholar 

  5. Wang K, Pei P, Ma Z et al (2014) Morphology control of zinc regeneration for zinc–air fuel cell and battery. J Power Sour 271:65–75. https://doi.org/10.1016/j.jpowsour.2014.07.182

    Article  CAS  Google Scholar 

  6. Riede J-C, Turek T, Kunz U (2018) Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery. Electrochim Acta 269:217–224. https://doi.org/10.1016/j.electacta.2018.02.110

    Article  CAS  Google Scholar 

  7. Neburchilov V, Wang H, Martin JJ et al (2010) A review on air cathodes for zinc–air fuel cells. J Power Sour 195(5):1271–1291. https://doi.org/10.1016/j.jpowsour.2009.08.100

    Article  CAS  Google Scholar 

  8. Pei P, Wang K, Ma Z (2014) Technologies for extending zinc–air battery’s cyclelife: a review. Appl Energy 128:315–324. https://doi.org/10.1016/j.apenergy.2014.04.095

    Article  CAS  Google Scholar 

  9. Han X, Li X, White J et al (2018) Metal-air batteries: from static to flow system. Adv Energy Mater 8(27):1801396. https://doi.org/10.1002/aenm.201801396

    Article  CAS  Google Scholar 

  10. Bockelmann M, Kunz U, Turek T (2016) Electrically rechargeable zinc-oxygen flow battery with high power density. Electrochem Commun 69:24–27. https://doi.org/10.1016/j.elecom.2016.05.013

    Article  CAS  Google Scholar 

  11. Bockris J, Nagy Z, Damjanovic A (1972) On the deposition and dissolution of zinc in alkaline solutions. J Electrochem Soc 119(3):285–295. https://doi.org/10.1149/1.2404188

    Article  CAS  Google Scholar 

  12. Cachet C, Wiart R, Zoppas-Ferreira J (1993) Zinc deposition and dissolution in a flow-through porous electrode. Electrochim Acta 38(2–3):311–318. https://doi.org/10.1016/0013-4686(93)85145-O

    Article  CAS  Google Scholar 

  13. Cachet C, Ströder U, Wiart R (1982) The kinetics of zinc electrode in alkaline zincate electrolytes. Electrochim Acta 27(7):903–908. https://doi.org/10.1016/0013-4686(82)80214-4

    Article  CAS  Google Scholar 

  14. Dirkse TP (1981) The behavior of the zinc electrodes in alkaline solutions. J Electrochem Soc 128(7):1412–1415. https://doi.org/10.1149/1.2127654

    Article  CAS  Google Scholar 

  15. Hampson NA, Shaw PE, Taylor R (1969) Anodic behaviour of zinc in potassium hydroxide solution: II.*Horizontal anodes in electrolytes containing Zn(II). Br Corros J 4(4):207–211. https://doi.org/10.1179/000705969798325398

    Article  CAS  Google Scholar 

  16. Muralidharan VS, Rajagopalan KS (1978) Kinetics and mechanism of corrosion of zinc in sodium hydroxide solutions by steady-state and transient methods. J Electroanal Chem 94(1):21–36. https://doi.org/10.1016/S0022-0728(78)80395-7

    Article  CAS  Google Scholar 

  17. Chang Y-C (1985) Anodic dissolution of zinc electrodes in alkaline electrolyte: mass transport effects. J Electrochem Soc 132(2):375. https://doi.org/10.1149/1.2113842

    Article  CAS  Google Scholar 

  18. Popova TI, Simonova NA, Kabanov BN (1967) Anodic dissolution of passive zinc in zincate solutions of alkali. Soviet Electrochem 3:1273–1279

    Google Scholar 

  19. Dirkse TP (1955) Electrolytic oxidation of zinc in alkaline solutions. J Electrochem Soc 102(9):497–501. https://doi.org/10.1149/1.2430136

    Article  CAS  Google Scholar 

  20. Armstrong RD, Bell MF (1974) The electrochemical behaviour of zinc in alkaline solution. Electrochemistry 4:1–17. https://doi.org/10.1039/9781847557247-00001

    Article  CAS  Google Scholar 

  21. Hampson NA, Herdman GA, Taylor R (1970) Some kinetic and thermodynamic studies of the system Zn/Zn(II) ·OH−. J Electroanal Chem 25(1):9–18. https://doi.org/10.1016/S0022-0728(70)80034-1

    Article  CAS  Google Scholar 

  22. Cachet C (1992) The behavior of zinc electrode in alkaline electrolytes. J Electrochem Soc 139(3):644. https://doi.org/10.1149/1.2069279

    Article  CAS  Google Scholar 

  23. Vetter KJ (1967) Electrochemical kinetics: Theoretical and experimental aspects. Academic Press, New York

    Google Scholar 

  24. Deiss E, Holzer F, Haas O (2002) Modeling of an electrically rechargeable alkaline Zn–air battery. Electrochim Acta 47(25):3995–4010. https://doi.org/10.1016/S0013-4686(02)00316-X

    Article  CAS  Google Scholar 

  25. Schröder D, Krewer U (2014) Model based quantification of air-composition impact on secondary zinc air batteries. Electrochim Acta 117:541–553. https://doi.org/10.1016/j.electacta.2013.11.116

    Article  CAS  Google Scholar 

  26. Liu L, Zuo R, Sun Q et al (2013) Structure and electrical properties of Mn doped Bi(Mg1/2Ti1/2)O3-PbTiO3 ferroelectric thin films. Appl Surf Sci 268:327–331. https://doi.org/10.1016/j.apsusc.2012.12.087

    Article  CAS  Google Scholar 

  27. Farr JPG, Hampson NA (1968) The exchange reaction Zn(II)/Zn(Hg) in alkali. J Electroanal Chem 18(4):407–411. https://doi.org/10.1016/S0022-0728(68)80008-7

    Article  CAS  Google Scholar 

  28. Boden DP, Wylie RB, Spera VJ (1971) The electrode potential of zinc amalgam in alkaline zincate solutions. J Electrochem Soc 118(8):1298. https://doi.org/10.1149/1.2408309

    Article  CAS  Google Scholar 

  29. Despić AR, Jovanović D, Rakić T (1976) Kinetics and mechanism of deposition of zinc from zincate in concentrated alkali hydroxide solutions. Electrochim Acta 21(1):63–77. https://doi.org/10.1016/0013-4686(76)85111-0

    Article  Google Scholar 

  30. Chang Y-C (1984) A model for the anodic dissolution of zinc in alkaline electrolyte. J Electrochem Soc 131(7):1465. https://doi.org/10.1149/1.2115875

    Article  CAS  Google Scholar 

  31. Orazem ME, Tribollet B (2017) Electrochemical impedance spectroscopy: the electrochemical society series. Wiley, Hoboken

    Book  Google Scholar 

  32. Bockelmann M, Becker M, Reining L et al (2019) Passivation of zinc anodes in alkaline electrolyte: part II. Influence of operation parameters. J Electrochem Soc 166(6):A1132–A1139. https://doi.org/10.1149/2.0791906jes

    Article  CAS  Google Scholar 

  33. Erdey-Grúz T, Volmer M (1930) Zur Theorie der Wasserstoff Überspannung. Z Phys Chem 150A:203–213. https://doi.org/10.1515/zpch-1930-15020

    Article  Google Scholar 

  34. Danilov FI, Protsenko VS (2010) Actual activation energy of electrochemical reactions at stage charge transfer. Russ J Electrochem 46(2):188–195. https://doi.org/10.1134/S1023193510020102

    Article  CAS  Google Scholar 

  35. Protsenko VS, Danilov FI (2011) Activation energy of electrochemical reaction measured at a constant value of electrode potential. J Electroanal Chem 651(2):105–110. https://doi.org/10.1016/j.jelechem.2010.12.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Forschung (BMWi), Grant Number 03ESP217 E) during the ZnPLUS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurens Reining.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reining, L., Bockelmann, M., Kunz, U. et al. Kinetics of active zinc dissolution in concentrated KOH solutions. J Appl Electrochem 50, 149–158 (2020). https://doi.org/10.1007/s10800-019-01376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01376-1

Keywords

Navigation