Skip to main content
Log in

Electrochemical sensing of rifampicin in pharmaceutical samples using meso-tetrakis(4-hydroxyphenyl)porphyrinato cobalt(II) anchored carbon nanotubes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, an electrochemical sensing platform is prepared for rifampicin determination based on multiwalled carbon nanotubes (MWCNTs) modified with meso-tetrakis(4-hydroxyphenyl)porphyrinato cobalt(II) (CoTHPP) nanocomposite (abbreviated as MWCNTs-CoTHPP). The material is characterized by different techniques such as UV–Vis, Fourier transform-infrared, Raman, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis. For the electrochemical sensing platform, the nanocomposite, MWCNTs-CoTHPP is immobilized on glassy carbon (GC) electrode (represented as GC/MWCNTs-CoTHPP) and applied for electrochemical recognition of rifampicin. It is found that the GC/MWCNTs-CoTHPP electrode facilitates the electrochemical oxidation of rifampicin with decreased overpotential in 0.1 M acetate buffer (pH 4.7). Further, GC/MWCNTs-CoTHPP exhibits broad calibration range (0.01 µM–5.0 mM), high sensitivity (217 µA mM−1 cm−2), high reproducibility (relative standard deviation = 4.83%, n = 6), and low detection limit (0.008 µM) for rifampicin determination. In addition, this method is successfully applied for real sample (rifampicin capsule) analysis with consistent results. The results suggest that MWCNTs-CoTHPP is a potential candidate for an effective, rapid, and simple electrochemical sensor to detect rifampicin in pharmaceutical formulations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hammam E, Beltagi A, Ghoneim M (2004) Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode. Microchem J 77:53–62

    Article  CAS  Google Scholar 

  2. Espinosa-Mansilla A, Valenzuela MA, de la Peña AM et al (2001) Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid. Anal Chim Acta 427:129–136

    Article  CAS  Google Scholar 

  3. Hahn Y, Shin S (2001) Electrochemical behavior and differential pulse polarographic determination of rifampicin in the pharmaceutical preparations. Arch Pharm Res 24:100–104

    Article  CAS  PubMed  Google Scholar 

  4. Rastgar S, Shahrokhian S (2014) Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application. Talanta 119:156–163

    Article  CAS  PubMed  Google Scholar 

  5. Fang P-F, Cai H-L, Li H-D et al (2010) Simultaneous determination of isoniazid, rifampicin, levofloxacin in mouse tissues and plasma by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 878:2286

    Article  CAS  Google Scholar 

  6. Srivastava A, Waterhouse D, Ardrey A, Ward SA (2012) Quantification of rifampicin in human plasma and cerebrospinal fluid by a highly sensitive and rapid liquid chromatographic–tandem mass spectrometric method. J Pharm Biomed Anal 70:523–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawde A-N, Temerk Y, Farhan N (2014) Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable pencil electrodes. Acta Chim Slov 61:398–405

    CAS  PubMed  Google Scholar 

  8. Ajayi RF, Sidwaba U, Feleni U et al (2014) Chemically amplified cytochrome P450-2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug. Electrochim Acta 128:149–155

    Article  CAS  Google Scholar 

  9. Leandro KC, Carvalho JM, Giovanelli LF, Moreira JC (2009) Development and validation of an electroanalytical methodology for determination of isoniazid and rifampicin content in pharmaceutical formulations. Braz J Pharm Sci 45:331–337

    Article  CAS  Google Scholar 

  10. Lomillo MAA, Renedo OD, Martínez MJA (2005) Optimization of a cyclodextrin-based sensor for rifampicin monitoring. Electrochim Acta 50:1807–1811

    Article  CAS  Google Scholar 

  11. de-Oliveira PR, Schibelbain AF, Neiva EG et al (2018) Nickel hexacyanoferrate supported at nickel nanoparticles for voltammetric determination of Rifampicin. Sens Actuators B 260:816–823

    Article  CAS  Google Scholar 

  12. Tan ND, Yin JH, Yuan Y et al (2018) One-pot hydrothermal synthesis of highly fluorescent polyethyleneimine-capped copper nanoclusters for specific detection of Rifampicin Bull Korean Chem Soc 39:564–657

    Google Scholar 

  13. Amidi S, Ardakani YH, Amiri-Aref M et al (2017) Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Adv 7:40111–40118

    Article  CAS  Google Scholar 

  14. Asadpour-Zeynali K, Mollarasouli F (2017) Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens Bioelectron 92:509–516

    Article  CAS  PubMed  Google Scholar 

  15. Santos WJ, Sousa AL, Luz RC et al (2006) Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(II) tetrasulfonated phthalocyanine. Talanta 70:588–594

    Article  CAS  PubMed  Google Scholar 

  16. Collman JP, Marrocco M, Denisevich P et al (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem 101:117–122

    Article  CAS  Google Scholar 

  17. Quintino MS, Winnischofer H, Araki K et al (2005) Cobalt oxide/tetraruthenated cobalt-porphyrin composite for hydrogen peroxide amperometric sensors. Analyst 130:221

    Article  CAS  PubMed  Google Scholar 

  18. Lennox JC, Murray RW (1977) Chemically modified electrodes. J Electroanal Chem 78:395–401

    Article  CAS  Google Scholar 

  19. Kadish KM, Davis DG (1973) Electrochemical studies of metalloporphyrins. Ann NY Acad Sci 206:495–503

    Article  CAS  PubMed  Google Scholar 

  20. Biesaga M, Pyrzyńska K, Trojanowicz M (2000) Porphyrins in analytical chemistry. a review. Talanta 51:209–224

    Article  CAS  PubMed  Google Scholar 

  21. Dobson D, Saini S (1997) Porphyrin-modified electrodes as biomimetic sensors for the determination of organohalide pollutants in aqueous samples. Anal Chem 69:3532–3538

    Article  CAS  PubMed  Google Scholar 

  22. Sonkar PK, Prakash K, Yadav M et al (2017) Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J Mater Chem A 5:6263–6276

    Article  CAS  Google Scholar 

  23. Lu W, Li N, Chen W, Yao Y (2009) The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon 47:3337–3345

    Article  CAS  Google Scholar 

  24. Gao C, Jin YZ, Kong H et al (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932

    Article  CAS  PubMed  Google Scholar 

  25. Sonkar PK, Ganesan V, Sen Gupta SK et al (2017) Highly dispersed multiwalled carbon nanotubes coupled manganese salen nanostructure for simultaneous electrochemical sensing of vitamin B2 and B6. J Electroanal Chem 807:235–243

    Article  CAS  Google Scholar 

  26. Zeng B, Wei S, Xiao F, Zhao F (2006) Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens Actuators B 115:240–246

    Article  CAS  Google Scholar 

  27. Milgrom LR (1983) Synthesis of some new tetra-arylporphyrins for studies in solar energy conversion. J Chem Soc Perkin Trans 1:2535–2539

    Article  Google Scholar 

  28. Wu C, Wang Z, Wang L et al (2012) Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Adv 2:4045–4047

    Article  CAS  Google Scholar 

  29. Bansal M, Srivastava R, Lal C et al (2010) Change in conformation of polymer PFO on addition of multiwall carbon nanotubes. Nanoscale 2:1171–1177

    Article  CAS  PubMed  Google Scholar 

  30. Shahid MM, Rameshkumar P, Pandikumar A et al (2015) An electrochemical sensing platform based on a reduced graphene oxide–cobalt oxide nanocube@ platinum nanocomposite for nitric oxide detection. J Mater Chem A 3:14458–14468

    Article  CAS  Google Scholar 

  31. Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface-and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39:4820–4844

    Article  CAS  PubMed  Google Scholar 

  32. Boucher L, Katz J (1967) The infared spectra of metalloporphyrins (4000-160 cm–1). J Am Chem Soc 89:1340–1345

    Article  CAS  PubMed  Google Scholar 

  33. Shimomura ET, Phillippi MA, Goff HM et al (1981) Infrared spectroscopy of oxidized metalloporphyrins: detection of a band diagnostic of porphyrin-centered oxidation. J Am Chem Soc 103:6778–6780

    Article  CAS  Google Scholar 

  34. Zhang X, Zhang Y, Jiang J (2005) Infrared spectra of metal-free, N′,N-dideuterio, and magnesium porphyrins: density functional calculations. Spectrochim Acta A 61:2576–2583

    Article  CAS  Google Scholar 

  35. Hai C, Shirai T, Fuji M (2013) Fabrication of conductive porous alumina (CPA) structurally modified with carbon nanotubes (CNT). Adv Powder Technol 24:824–828

    Article  CAS  Google Scholar 

  36. Cruz-Silva E, Cullen DA, Gu L et al (2008) Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus—nitrogen doped multiwalled carbon nanotubes. ACS Nano 2:441–448

    Article  CAS  PubMed  Google Scholar 

  37. Lee Y-W, An G-H, Lee S et al (2016) Synergistic incorporation of hybrid heterobimetal–nitrogen atoms into carbon structures for superior oxygen electroreduction performance. Catal Sci Technol 6:2085–2091

    Article  CAS  Google Scholar 

  38. Grassi G, Scala A, Piperno A et al (2012) A facile and ecofriendly functionalization of multiwalled carbon nanotubes by an old mesoionic compound. Chem Commun 48:6836–6838

    Article  CAS  Google Scholar 

  39. D’Souza F, Villard A, Van Caemelbecke E et al (1993) Electrochemical and spectroelectrochemical behavior of cobalt(III), cobalt(II), and cobalt(I) complexes of meso-tetraphenylporphyrinate bearing bromides on the. beta.-pyrrole positions. Inorg Chem 32:4042–4048

    Article  Google Scholar 

  40. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  41. Hammam E, Beltagi AM, Ghoneim MM (2004) Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode. Microchem J 77:53–62

    Article  CAS  Google Scholar 

  42. Sonkar PK, Ganesan V, Prajapati A (2016) Polymeric Co(salen) scaffold for the electrochemical determination of acetaminophen in pharmaceutical sample. Ionics 22:1741–1749

    Article  CAS  Google Scholar 

  43. Tyszczuk K, Korolczuk M (2009) New protocol for determination of rifampicine by adsorptive stripping voltammetry. Electroanalysis 21:101–106

    Article  CAS  Google Scholar 

  44. Jain P, Pathak VM (2013) Development and validation of UV-visible spectrophotometric method for estimation of rifapentine in bulk and dosage form. Der Pharma Chem 5:251–255

    CAS  Google Scholar 

  45. Mohamed MA, Shantier SW, Mohamed MA et al (2015) Spectrophotometric method for the simultaneous determination of isoniazid and rifampicin in bulk and tablet forms. Int J Pharm Sci Rev Res 32:154–156

    CAS  Google Scholar 

  46. Benetton SA, Kedor-Hackmann ERM, Santoro MIRM., Borges VM (1998) Visible spectrophotometric and first-derivative UV spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations. Talanta 47:639–643

    Article  CAS  PubMed  Google Scholar 

  47. Sonkar PK, Ganesan V, Gupta R, Yadav DK (2016) Simple route to anchor silver nanoparticles into thiol-functionalized mesoporous silica: synthesis, characterization and electrochemical applications. J Nanopart Res 18:297–307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by DST (SR/NM/NS-2012/2013(G)), New Delhi, India. We are pleased to thank Prof. R.K. Singh, Banaras Hindu University for Raman characterization and Dr. S.A. John, Gandhigram Rural University for SEM and useful suggestions. MS sincerely thanks Science and Engineering Research Board (EMR/2016/004016) for the financial support. KP thanks Ministry of Human Resource Development, India for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellaichamy Ganesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 362 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonkar, P.K., Yadav, M., Prakash, K. et al. Electrochemical sensing of rifampicin in pharmaceutical samples using meso-tetrakis(4-hydroxyphenyl)porphyrinato cobalt(II) anchored carbon nanotubes. J Appl Electrochem 48, 937–946 (2018). https://doi.org/10.1007/s10800-018-1221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1221-3

Keywords

Navigation