Skip to main content

Advertisement

Log in

Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Development of advanced supercapacitors which provide greater energy density while retaining high power density can revolutionize energy storage solutions for both civilian and military applications. Herein, we present fabrication and characterization of nanostructured supercapacitor electrodes using manganese dioxide and carbon nanotubes (MnO2/CNTs) on flexible graphite foil substrate for integration into a supercapacitor prototype cell, without any additives or binders. Low-cost, thermal chemical vapor deposition process in a tube furnace was used to synthesize CNTs, acting as the current conductors, directly on both sides of the flexible, conducting graphite foil current collector. Thin-film MnO2 deposition on the CNTs was achieved by electrochemical technique using in situ reduction of potassium permanganate (KMnO4), without any supporting electrolyte, which provides excellent bonding between the two for enhanced stability. Eight electrodes were assembled in a stack with polypropylene separators and packaged in a pouch cell with organic electrolyte (1 M tetraethylammonium tetrafluoroborate in acetonitrile) yielding a total capacitance of nearly 2.8 F at 2.5 V and a corresponding specific capacitance of 388 F g−1 was calculated for MnO2. High cell capacitance and a low DC resistance yield a maximum specific power value of 36.1 kW kg−1 and a maximum specific energy of 48.5 Wh kg−1 at 2.5 V when considering the total mass including that of CNTs and MnO2. Cycling data showed nearly 100% capacitance retention over 3000 charge discharge cycles. To the best of our knowledge, a supercapacitor prototype cell in this configuration has not been fabricated and/or reported previously.

Graphical Abstract

Schematic representation of the prototype supercapacitor cell consisting of a stack of eight electrodes with polypropylene separators. On the right is a blow-up representation of a double side electrode with MnO2/CNT on both sides of the graphite foil substrate. The equivalent circuit diagram can be seen on the left, consisting of seven capacitors in parallel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng Q, Ma J, Zhang H, Shinya N, Qin L, Tang J (2010) Electrodeposition of MnO2 on carbon nanotube thin films as flexible electrodes for supercapacitors. Trans Mater Res Soc Jpn 35(2):369–372. doi:10.14723/tmrsj.35.369

    Article  CAS  Google Scholar 

  2. Wang Y (2012) Manganese dioxide based composite electrodes for electrochemical supercapacitors. Doctoral Dissertation, McMaster University

  3. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors high-performance electrochemical capacitors. Nano Energy 2(2):213–234. doi:10.1016/j.nanoen.2012.10.006

    Article  CAS  Google Scholar 

  4. Akbulut S (2011) Optimization of carbon nanotube supercapacitor electrode. Master’s Thesis, Vanderbilt University

  5. Li J, Cheng X, Shashurin A, Keidar M (2012) Review of electrochemical capacitors based on carbon nanotubes and graphene. Graphene 01(01):1–13. doi:10.4236/graphene.2012.11001

    Article  Google Scholar 

  6. Caglar B (2010). Production of carbon nanotubes by PECVD and their applications to supercapacitors. Master’s Thesis, Universitat de Barcelona

  7. Wei S (2009) Field emitters and supercapacitors based on carbon nanotube films. Doctoral Dissertation, Vanderbilt University

  8. Anton CM, Ervin MH (2011) Carbon nanotube based flexible supercapacitors. Tech. No. ARL-TR-5522

  9. Malmberg H (2007) Nanoscientific investigations of electrode materials for supercapacitors. Doctoral Dissertation, Kungliga Tekniska Högskolan

  10. Guittet M, Aria AI, Gharib M (2011) Use of vertically-aligned carbon nanotube array to enhance the performance of electrochemical capacitors. In: 2011 11th IEEE international conference on nanotechnology. doi:10.1109/nano.2011.6144354

  11. Shanov V, Yun Y, Shulz MJ (2006) Synthesis and characterization of carbon nanotube materials. J Univ Chem Technol Metall 35(4):377–390

    Google Scholar 

  12. Lan Y, Wang Y, Ren ZF (2011) Physics and applications of aligned carbon nanotubes. Adv Phys 60(4):553–678. doi:10.1080/00018732.2011.599963

    Article  CAS  Google Scholar 

  13. Liu W, Yan X, Lang J, Peng C, Xue Q (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22(33):17245. doi:10.1039/c2jm32659k

    Article  CAS  Google Scholar 

  14. Chen J, Li W, Wang D, Yang S, Wen J, Ren Z (2002) Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40(8):1193–1197. doi:10.1016/s0008-6223(01)00266-4

    Article  CAS  Google Scholar 

  15. Augustyn V et al (2013) High-rate electrochemical energy storage through Li intercalation pseudocapacitance. Nat Mater 12(6):518–522. doi:10.1038/nmat3601

    Article  CAS  Google Scholar 

  16. Wu N (2002) Nanocrystalline oxide supercapacitors. Mater Chem Phys 75(1–3):6–11. doi:10.1016/s0254-0584(02)00022-6

    Article  CAS  Google Scholar 

  17. Boukhalfa S, Evanoff K, Yushin G (2012) Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ Sci 5(5):6872. doi:10.1039/c2ee21110f

    Article  CAS  Google Scholar 

  18. Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110(12):6015–6019. doi:10.1021/jp056754n

    Article  CAS  Google Scholar 

  19. Lu Z et al (2012) Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res 5(5):369–378. doi:10.1007/s12274-012-0217-2

    Article  CAS  Google Scholar 

  20. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146–151. doi:10.1038/nmat2612

    Article  CAS  Google Scholar 

  21. Kiamahalleh MV, Zein SH, Najafpour G, Sata SA, Buniran S (2012) Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials. NANO 07(02):1230002. doi:10.1142/s1793292012300022

    Article  Google Scholar 

  22. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721. doi:10.1039/c0cs00127a

    Article  CAS  Google Scholar 

  23. Hu L et al (2011) Symmetrical MnO2–carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5(11):8904–8913. doi:10.1021/nn203085j

    Article  CAS  Google Scholar 

  24. Xiao F, Xu Y (2012) Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J Mater Sci Mater Electron 24(6):1913–1920. doi:10.1007/s10854-012-1034-9

    Article  Google Scholar 

  25. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733. doi:10.1021/nl101723g

    Article  CAS  Google Scholar 

  26. Zhao J, Lu Z, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Adv 3(4):1045–1049. doi:10.1039/c2ra22566b

    Article  CAS  Google Scholar 

  27. Teng F, Santhanagopalan S, Meng DD (2010) Microstructure control of MnO2/CNT hybrids under in situ hydrothermal conditions. Solid State Sci 12(9):1677–1682. doi:10.1016/j.solidstatesciences.2010.07.026

    Article  CAS  Google Scholar 

  28. Yan Z, Hao Z, Yajuan X, Yuexin D (2010) Studies of electromagnetic properties of MWCNTs after electroless plating with Co-Fe alloy. Chin J Aeronaut 23(3):377–380. doi:10.1016/s1000-9361(09)60230-2

    Article  Google Scholar 

  29. Lu W, Henry K, Turchi C, Pellegrino J (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155(5):A361–A367. doi:10.1149/1.2869202

    Article  CAS  Google Scholar 

  30. Chen Y, Hsu Y, Lin Y, Chen L, Chen K (2012) Spontaneous synthesis and electrochemical characterization of nanostructured MnO2 on nitrogen-incorporated carbon nanotubes. Int J Electrochem 2012:1–10. doi:10.1155/2012/475417

    Article  Google Scholar 

  31. Gao T, Fjellvåg H, Norby P (2009) A comparison study on Raman scattering properties of α- and β-MnO2. Anal Chim Acta 648(2):235–239. doi:10.1016/j.aca.2009.06.059

    Article  CAS  Google Scholar 

  32. Xiao C, Chen J, Liu B, Chu X, Wu L, Yao S (2011) Sensitive and selective electrochemical sensing of l-cysteine based on a caterpillar-like manganese dioxide–carbon nanocomposite. Phys Chem Chem Phys 13(4):1568–1574. doi:10.1039/c0cp00980f

    Article  CAS  Google Scholar 

  33. Buciuman F, Patcas F, Craciun R, Zahn DR (1999) Vibrational spectroscopy of bulk and supported manganese oxides. Phys Chem Chem Phys 1(1):185–190. doi:10.1039/a807821a

    Article  CAS  Google Scholar 

  34. Akbulut S, Yilmaz M, Raina S, Hsu S-H, Kang WP (2017) Solid-state supercapacitor cell based on 3D nanostructured MnO2/CNT microelectrode array on graphite and H3PO4/PVA electrolyte. Diamond Relat Mater 74:222–228. doi:10.1016/j.diamond.2017.03.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supil Raina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbulut, S., Yilmaz, M., Raina, S. et al. Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil. J Appl Electrochem 47, 1035–1044 (2017). https://doi.org/10.1007/s10800-017-1098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1098-6

Keywords

Navigation