Skip to main content
Log in

Methanol oxidation on Pt/CeO2@C–N electrocatalysts prepared by the in-situ carbonization of polyvinylpyrrolidone

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This research is aimed to improve the poor electron conductivity of CeO2 as the catalyst support for methanol oxidation. Pt/CeO2 catalyst coated with nitrogen-doped carbon layer has been prepared through a combined microwave-assisted polyol with in-situ carbonization of nitrogen-doped carbon-coating process using polyvinylpyrrolidone as the nitrogen-doped carbon precursor. Electrochemical results show that Pt/CeO2 catalyst coated with nitrogen-doped carbon layer has higher activity than the uncoated Pt/CeO2 catalyst due to more uniform dispersion, electron-donating effects, and the superior electrical conductivity of the CeO2 support enhanced by the nitrogen-doped carbon layer. Further, electrochemical results show that the optimal doped amount of polyvinylpyrrolidone is 20 wt%. The physical characteristics such as high-resolution transmission electron microscopy and X-ray photoelectron spectrometer have confirmed the existence of the nitrogen-doped carbon layer on CeO2.

Graphical Abstract

A novel Pt/CeO2 catalyst coated with N-doped carbon layer has been successfully prepared through a combined microwave-assisted polyol with in-situ carbonization of N-doped carbon-coating process using polyvinylpyrrolidone (PVP) as the N-doped carbon precursor. The greatly improved activity and durability of Pt/CeO2@C–N catalyst is mainly a consequence of more uniform dispersion, smaller size of Pt nanoparticles, and the superior electrical conductivity of the CeO2 support enhanced by the N-doped carbon layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Qiao Y, Li CM (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036

    Article  CAS  Google Scholar 

  2. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3:1437–1446

    Article  CAS  Google Scholar 

  3. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059

    Article  CAS  Google Scholar 

  4. Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim H, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877

    Article  CAS  Google Scholar 

  5. Li X, Chen WX, Zhao J, Xing W, Xu ZD (2005) Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43:2168–2174

    Article  CAS  Google Scholar 

  6. Shen Y, Xiao K, Xi J, Qiu X (2015) Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J Power Sources 278:235–244

    Article  CAS  Google Scholar 

  7. Huang SY, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899

    Article  CAS  Google Scholar 

  8. Sad ME (2015) Aqueous phase reforming of xylitol and sorbitol over Pt/Al2O3 catalysts: effect of Pt content on hydrogen production. In: 24th North American catalysis society meeting, Nam

  9. Kennedy G, Baker LR, Somorjai GA (2014) Selective amplification of CO bond hydrogenation on Pt/TiO2: catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation. Angew Chem 126:3473–3476

    Article  Google Scholar 

  10. Wang H, Wang X, Zheng J, Peng F, Yu H (2014) Pt/MoO3-WO3/CNTs catalyst with excellent performance for methanol electrooxidation. Chin J Catal 35:1687–1694

    Article  CAS  Google Scholar 

  11. Leonardi SG, Aloisio D, Donato N, Russo PA, Ferro MC, Pinna N, Neri G (2014) Amperometric sensing of H2O2 using Pt–TiO2/reduced graphene oxide nanocomposites. ChemElectroChem 1:617–624

    Article  Google Scholar 

  12. Lei M, Wang ZB, Li JS, Tang HL, Liu WJ, Wang YG (2014) CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Sci Rep 4:7415

    Article  CAS  Google Scholar 

  13. Wang H, Wang X, Zheng J, Peng F, Yu H (2015) Enhanced activity and durability of nanosized Pt–SnO2/IrO2/CNTs catalyst for methanol electrooxidation. J Nanosci Nanotechnol 15:3662–3669

    Article  CAS  Google Scholar 

  14. Corchado-García J, Cabrera CR (2014) Ethylene glycol oxidation at Pt/TiO2/carbon hybrid catalysts modified glassy carbon electrodes in alkaline media. Electrocatalysis 5:402–407

    Article  Google Scholar 

  15. Chen JZ, Ko WY, Yen YC, Chen PH, Lin KJ (2012) Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6:6633–6639

    Article  CAS  Google Scholar 

  16. Wang L, Zhang CB, He H, Liu FD, Wang CX (2016) Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-xylene. J Phys Chem C 120:6136–6144

    Article  CAS  Google Scholar 

  17. Sanetuntikul J, Ketpang K, Shanmugam S (2015) Hierarchical nanostructured Pt8Ti-TiO2/C as an efficient and durable anode catalyst for direct methanol fuel cells. ACS Catalysis 5:7321–7327

    Article  CAS  Google Scholar 

  18. Chu YY, Wang ZB, Jiang ZZ, Gu DM, Yin GP (2011) A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by β-cyclodextrin carbonization. Adv Mater 23:3100–3104

    Article  CAS  Google Scholar 

  19. Zhu J, He G, Liang L, Wan Q, Shen PK (2015) Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim Acta 158:374–382

    Article  CAS  Google Scholar 

  20. Chen Y, Wang J, Liu H, Li R, Sun X, Ye S, Knights S (2009) Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem Commun 11:2071–2076

    Article  CAS  Google Scholar 

  21. Liu Z, Shi Q, Zhang R, Wang Q, Kang G, Peng F (2014) Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. J Power Sources 268:171–175

    Article  CAS  Google Scholar 

  22. Li L, Chu YY, Cao J, Dai Z, Zhao SH, Tan XY (2015) Preparation of Pt/XC-72@CN electrocatalysts by the in situ carbonization of ionic liquid for methanol oxidation. Int J Hydrogen Energy 40:3900–3908

    Article  CAS  Google Scholar 

  23. Cao J, Chu Y, Tan XY (2014) Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@C–N) for methanol electro-oxidation. Mater Chem Phys 144:17–24

    Article  CAS  Google Scholar 

  24. Sui ZY, Meng YN, Xiao PW, Zhao ZQ, Wei ZX, Han BH (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7:1431–1438

    Article  CAS  Google Scholar 

  25. Zhang C, Wang X, Liang QF, Liu XZ, Weng QH, Liu JW, Yang YJ, Dai ZH, Ding KD, Bando Y (2016) Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett 16:2054–2060

    Article  CAS  Google Scholar 

  26. Sevilla M, Yu L, Zhao L, Ania CO, Titiricic MM (2014) Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustain Chem Eng 2:1049–1055

    Article  CAS  Google Scholar 

  27. Saha MS, Li R, Sun X, Ye S (2009) 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper. Electrochem Commun 11:438–441

    Article  CAS  Google Scholar 

  28. Gu DM, Chu YY, Wang ZB, Jiang ZZ, Yin GP, Liu Y (2011) Methanol oxidation on Pt/CeO 2–C electrocatalyst prepared by microwave-assisted ethylene glycol process [J]. Appl Catalysis B: Environ 102:9–18

    Article  CAS  Google Scholar 

  29. Chu YY, Cao J, Dai Z, Tan XY (2014) A novel Pt/CeO2 catalyst coated with nitrogen-doped carbon with excellent performance for DMFCs. J Mater Chem A 2:4038–4044

    Article  CAS  Google Scholar 

  30. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358

    Article  CAS  Google Scholar 

  31. Zhang S, Wang H, Zhang N, Kong F, Liu H, Yin G (2012) Role of Pt-pyridinic nitrogen sites in methanol oxidation on Pt/polypyrrole-carbon black Catalyst. J Power Sources 197:44–49

    Article  CAS  Google Scholar 

  32. Jiang ZZ, Wang ZB, Qu WL, Rivera H, Gu DM, Yin GP (2012) Carbon-riveted Pt catalyst supported on nanocapsule MWCNTs–Al2O3 with ultrahigh stability for high-temperature proton exchange membrane fuel cells. Noscale 4:7411–7418

    Article  CAS  Google Scholar 

  33. Fan HS, Wang H, Zhao N, Xu J, Pan F (2014) Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. Sci Rep 4:7426

    Article  CAS  Google Scholar 

  34. Su Y, Jiang H, Zhu Y, Yang X, Shen J, Zou W, Chen J, Li C (2014) Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J Mater Chem A 2:7281–7287

    Article  CAS  Google Scholar 

  35. Gu X, Yue J, Chen L, Liu S, Xu H, Yang J, Qian Y, Zhao X (2015) Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. J Mater Chem A 3:1037–1041

    Article  CAS  Google Scholar 

  36. Gu L, Jiang L, Jin J, Liu J, Sun G (2015) Yolk–shell structured iron carbide/N-doped carbon composite as highly efficient and stable oxygen reduction reaction electrocatalyst. Carbon 82:572–578

    Article  CAS  Google Scholar 

  37. Jin H, Xiong T, Li Y, Xu X, Li M, Wang Y (2014) Improved electrocatalytic activity for ethanol oxidation by Pd@N-doped carbon from biomass. Chem Commun 50:12637–12640

    Article  CAS  Google Scholar 

  38. Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

  39. Xue Y, Liu J, Chen H, Wang R, Li D, Qu J, Dai L (2012) Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew Chem 51:12124–12127

    Article  CAS  Google Scholar 

  40. Coloma F, Sepulveda-Escribano A, Fierro JLG, Rodriguez-Reinoso F (1994) Preparation of platinum supported on pregraphitized carbon blacks. Langmuir 10:750–758

    Article  CAS  Google Scholar 

  41. Motoyama Y, Lee Y, Tsuji K, Yoon SH, Mochida I, Nagashima H (2011) Platinum nanoparticles supported on nitrogen-doped carbon nanofibers as efficient poisoning catalysts for the hydrogenation of nitroarenes. ChemCatChem 3:1578–1581

    Article  CAS  Google Scholar 

  42. Li T, Lun N, Qi YX, Wei C, Sun YK, Zhu HL, Liu JR, Bai YJ (2015) Enhancing the reversible capacity and rate performance of anatase TiO2 by combined coating and compositing with N-doped carbon. J Power Sources 273:472–478

    Article  CAS  Google Scholar 

  43. Ning R, Ge C, Liu Q, Tian J, Asiri AM, Alamry KA, Li CM, Sun X (2014) Hierarchically porous N-doped carbon nanoflakes: large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon 78:60–69

    Article  CAS  Google Scholar 

  44. Zheng X, Deng J, Wang N, Deng D, Zhang WH, Bao X, Li C (2014) Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells. Angew Chem 53:7023–7027

    Article  CAS  Google Scholar 

  45. Zhao A, Masa J, Xia W (2015) Very low amount of TiO2 on N-doped carbon nanotubes significantly improves oxygen reduction activity and stability of supported Pt nanoparticles. Phys Chem Chem Phys 17:10767–10773

    Article  CAS  Google Scholar 

  46. Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y (2015) In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137:2688–2694

    Article  CAS  Google Scholar 

  47. Ota KI, Nishigori S, Kamiya N (1988) Dissolution of platinum anodes in sulfuric acid solution. J Electroanal Chem Interfacial Electrochem 257:205–215

    Article  CAS  Google Scholar 

  48. Larachi F, Pierre J, Adnot A, Bernis A (2002) Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl Surf Sci 195:236–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the grant from the National Natural Science Foundation of China (Grant No. 21206124, No. 21503059 and No. 21506159), Natural Science Foundation of Tianjin (No. 12JCZDJC28400 and No. 12JCQNJC08600), and the Science and Technology Plans of Tianjin (No. 15PTSYJC00230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyao Tan or Yuanyuan Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tan, X., Qian, Y. et al. Methanol oxidation on Pt/CeO2@C–N electrocatalysts prepared by the in-situ carbonization of polyvinylpyrrolidone. J Appl Electrochem 46, 779–789 (2016). https://doi.org/10.1007/s10800-016-0969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0969-6

Keywords

Navigation