Skip to main content
Log in

Nanosized 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 synthesized by CNTs-assisted hydrothermal method as cathode material for lithium ion battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nano-sized 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 as novel cathode material was synthesized by a hydrothermal process with carbon nanotubes as template. The resulting 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 material showed excellent electrochemical performance, and the LR-1.0 sample had the best cycling stability and rate capability. When the LR-1.0 sample was tested as a cathode at 0.1 and 2.0 C, its initial discharge capacities can reach up to 267.0 and 146.6 mAh g−1, respectively. The discharge capacity retention of 93.3 % at 0.1 C can be achieved after 50 cycles. The electrochemical impedance spectroscopy measurement revealed that the charge transfer resistance was only 205.3 Ω. These results indicated that the 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 prepared by this method was a new promising cathode material for lithium ion batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim YS (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  3. Jo YN, Prasanna K, Park SJ, Lee CW (2013) Characterization of Li-rich xLi2MnO3·(1 – x)Li[MnyNizCo1 − y − z]O2 as cathode active materials for Li-ion batteries. Electrochim Acta 108:32–38

    Article  CAS  Google Scholar 

  4. Koyama Y, Tanaka I, Nagao M, Kanno R (2009) First-principles study on lithium removal form Li2MnO3. J Power Sources 189:798–801

    Article  CAS  Google Scholar 

  5. Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitta Y (2010) Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J Power Sources 195:834–844

    Article  CAS  Google Scholar 

  6. Wu Y, Manthiram A (2008) Structural stability of chemically delithiated layered (1 − z)Li[Li1/3Mn2/3]O2 − zLi[Mn0.5 − yNi0.5 − yCo2y]O2 solid solution cathodes. J Power Sources 183:749–754

    Article  CAS  Google Scholar 

  7. Lee CW, Sun YK, Prakash J (2004) A novel layered Li[Li0.12Ni2Mg0.32 − zMn0.56]O2 cathode material for lithium-ion batteries. Electrochim Acta 49:4425–4432

    Article  CAS  Google Scholar 

  8. Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195:567–573

    Article  CAS  Google Scholar 

  9. Thackeray MM, Johnson CS, Vaughe JT, Li N, Hackne SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 17:2257–2267

    Article  Google Scholar 

  10. Liu YJ, Li SB (2013) Effect of cooling method on the electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathodes. Ionics 19:477–481

    Article  CAS  Google Scholar 

  11. Lin J, Mu DB, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80

    Article  CAS  Google Scholar 

  12. Xiang XD, Li XQ, Li WS (2013) Preparation and characterization of size-uniform Li[Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery. J Power Source 230:89–95

    Article  CAS  Google Scholar 

  13. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9:787–795

    Article  CAS  Google Scholar 

  14. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1 − x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6:1085–1091

    Article  CAS  Google Scholar 

  15. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structrual complexity of lithium-rich Li1 + xM1 − xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538

    Article  CAS  Google Scholar 

  16. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3–stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  17. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    Article  CAS  Google Scholar 

  18. Gao J, Kim J, Manthiram A (2009) High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathode with low irreversible capacity loss for lithium ion batteries. Electrochem Commun 11:84–86

    Article  CAS  Google Scholar 

  19. Lim JH, Bang H, Lee KS, Amine K, Sun YK (2009) Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithtium secondary batteries. J Power Sources 189:571–575

    Article  CAS  Google Scholar 

  20. Kang SH, Thackeray MM (2009) Enhancing the rate capability of high capacity xLi2MnO3·(1 − x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun 11:748–751

    Article  CAS  Google Scholar 

  21. Guo XJ, Li YX, Zheng M, Zheng JM, Li J, Gong ZL, Yang Y (2008) Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) as cathode materials for lithium ion batteries. J Power Sources 184:414–419

    Article  CAS  Google Scholar 

  22. Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078

    Article  CAS  Google Scholar 

  23. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries. J Mater Chem 17:2069–2077

    Article  CAS  Google Scholar 

  24. Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23

    Article  CAS  Google Scholar 

  25. Francis A, Daniela K, Michael T, Leila Z, Judith G, Nicole L, Gil G, Boris M, Doron A (2010) Synthesis of integrated cathode materials xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130

    Article  Google Scholar 

  26. Kim GY, Yi SB, Park YJ, Kim HG (2008) Electrochemical behaviors of Li[Li(1−x)/3Mn(2−x)/3Ni x/3Co x/3]O2 cathode series (0 < x < 1) synthesized by sucrose combustion process for high capacity lithium ion batteries. Mater Res Bull 43:3543–3552

    Article  CAS  Google Scholar 

  27. Shi SJ, Tu JP, Tang YY, Zhang YQ, Wang XL, Gu CD (2013) Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template. J Power Sources 240:140–148

    Article  CAS  Google Scholar 

  28. Wu F, Wang M, Su Y, Bao L, Chen S (2010) A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367

    Article  CAS  Google Scholar 

  29. Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297

    Article  CAS  Google Scholar 

  30. Li L, Zhang X, Chen R, Zhao T, Lu J, Wu F, Amine K (2014) Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J Power Sources 249:28–34

    Article  CAS  Google Scholar 

  31. Ryu WH, Lim SJ, Kim WK, Kwon H (2014) 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. J Power Sources 257:186–191

    Article  CAS  Google Scholar 

  32. Zhang L, Borong W, Ning L, Feng W (2014) Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta 118:67–74

    Article  CAS  Google Scholar 

  33. Zhu Z, Zhu L (2014) Synhesis of layered cathode material 0.5Li2MnO3·LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery. J Power Sources 256:178–182

    Article  CAS  Google Scholar 

  34. Park CW, Kim SH, Ruth Mangani I, Lee JH, Boo S, Kim J (2007) Synthesis and materials characterization of Li2MnO3-LiCrO2 system nanocomposite electrode materials. Mater Res Bull 42:1374–1383

    Article  CAS  Google Scholar 

  35. Lu Z, Dahn JR (2003) In Situ and Ex Situ XRD investigation of Li[CrxLi1/3 − x/3Mn2/3 − 2x/3]O2 (x = 1/3) cathode material batteries, fuel cells, and energy conversion. J Electrochem Soc 150:A1044–A1051

    Article  CAS  Google Scholar 

  36. Hwang B, Santhanam R, Chen C (2003) Effect of synthesis conditions on electrochemical properties of LiNi1 − yCoyO2 cathode for lithium rechargeable batteries. J Power Sources 114:244–252

    Article  CAS  Google Scholar 

  37. Alcantara R, Lavela P, Tirado J, Stoyanova R, Zhecheva E (1998) Changes in structure and cathode performance with composition and preparation temperature of lithium cobalt nickel oxide. J Electrochem Soc 145:730–736

    Article  CAS  Google Scholar 

  38. Chang Z, Chen Z, Wu F, Tang H, Zhu Z, Yuan XZ, Wang H (2008) Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method. Electrochim Acta 53:5927–5933

    Article  CAS  Google Scholar 

  39. Penki TR, Shanmughasundaram D, Munichandraiah N (2014) Porous lithium rich Li1.2Mn0.54Ni0.22Fe0.04O2 prepared by microemulsion route as a high capacity and high rate capability positive electrode material. Electrochim Acta 143:152–160

    Article  CAS  Google Scholar 

  40. Yang J, Cheng F, Zhang X, Gao H, Tao Z, Chen J (2014) Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J Mater Chem A 2:1636–1640

    Article  CAS  Google Scholar 

  41. Li L, Song S, Zhang X, Chen R, Lu J, Wu F, Amine K (2014) Ultrasonic-assisted co-precipitation to synthesize lithium-rich cathode Li1.3Ni0.21Mn0.64O2+d materials for lithium-ion batteries. J Power Sources 272:922–928

    Article  CAS  Google Scholar 

  42. Tang YX, Rui XH, Zhang YY, Lim TM, Dong ZL, Hng HH, Chen XD, Yan QY, Chen Z (2012) Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structrure. J Mater Chem A 1:82–88

    Article  Google Scholar 

  43. Chen D, Yu Q, Xiang X, Chen M, Chen Z, Song S, Xiong L, Liao Y, Xing L, Li W (2015) Porous layered lithium-rich oxide nanorods: synthesis and performances as cathode of lithium ion battery. Electrochim Acta 154:83–93

    Article  CAS  Google Scholar 

  44. Kim JS, Johnson CS, Vaughey JT, Thackeray MM, Hackney SA (2004) Electrochemical and structural properties of xLi2MO3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem Mater 16:1996–2006

    Article  CAS  Google Scholar 

  45. Xu G, Li J, Li X, Zhou H, Ding X, Wang X, Kang F (2015) Understanding the electrochemical superiority of 0.6Li[Li1/3Mn2/3] O2–0.4Li[Ni1/3Co1/3Mn1/3]O2 nanofibers as cathode material for lithium ion batteries. Electrochim Acta 173:672–679

    Article  CAS  Google Scholar 

  46. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang S, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  47. Liu J, Wang Q, Reeja-Jayan B, Manthiram A (2010) Carbon-coating high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun 12:750–753

    Article  CAS  Google Scholar 

  48. Sclar H, Kovachev D, Zhechev E, Stoyanov R, Lavi R, Kimmel G, Grinblat J, Girshevitz O, Amalraj F, Haik O, Zinigra E, Markovsky B, Aurbach D (2009) On the performance of LiNi1/3Mn1/3Co1/3O2 nanoparticles as a cathode material for Lithium-ion batteries. J Electrochem Soc 156:A938–A948

    Article  CAS  Google Scholar 

  49. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3 − 2x/3)Mn(2/3 − x/3)]O2 cells using In Situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  50. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069–2077

    Article  CAS  Google Scholar 

  51. Park J, Seo JH, Plett G, Lu W, Sastry AM (2011) Numerical simulation of the effect of the dissolution of LiMn2O4 particles on Li-ion battery performance. Electrochem Solid-State Lett 14:A14–A18

    Article  CAS  Google Scholar 

  52. Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143:2204–2211

    Article  CAS  Google Scholar 

  53. Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sources 127:58–64

    Article  CAS  Google Scholar 

  54. Yu C, Guan X, Li G, Zheng J, Li L (2012) A novel approach to composite electrode 0.3Li2MnO3−0.7LiMn1/3Ni1/3Co1/3O2 in lithium-ion batteries with an anomalous capacity and cycling stability at 45.4 & #xB0;C. Script Mater 66:300–303

    Article  CAS  Google Scholar 

  55. Yang SY, Wang XY, Yang XK, Bai YS, Liu ZL, Shu HB, Wei QL (2012) Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2. Electrochim Acta 66:88–99

    Article  CAS  Google Scholar 

  56. Bettge M, Li Y, Sankaran B, Rago ND, Spila T, Haasch RT, Petrov I, Abraham DP (2013) Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifying the positive electrode with alumina. J Power Sources 233:346–357

    Article  CAS  Google Scholar 

  57. Dees D, Gunen E, Abraham D, Jansen A, Prakash J (2005) Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. J Electrochem Soc 152:A1409–A1417

    Article  CAS  Google Scholar 

  58. Suresh P, Shukla A, Munichandraiah N (2002) Temperature dependence studies of a.c. Impedance of lithium-ion cells. J Appl Electrochem 32:267–273

    Article  CAS  Google Scholar 

  59. Rodrigues S, Munichandraiah N, Shukla A (2000) A review of state-of-charge indication of batteries by means of a.c. Impedance measurements. J Power Sources 87:12–20

    Article  CAS  Google Scholar 

  60. Bai Y, Wang X, Zhang X, Shu H, Yang X, Hu B, Wei Q, Wu H, Song Y (2013) The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim Acta 109:355–364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51202083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Chen, Y., Luo, M. et al. Nanosized 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 synthesized by CNTs-assisted hydrothermal method as cathode material for lithium ion battery. J Appl Electrochem 46, 907–915 (2016). https://doi.org/10.1007/s10800-016-0964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0964-y

Keywords

Navigation