Skip to main content
Log in

Highly hydrophilic ordered mesoporous carbon–organic polymer composite and its applications in direct electrochemistry and the possibility of biosensing1

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A highly hydrophilic ordered mesoporous carbon–poly(vinyl alcohol) composite with large surface area and good biocompatibility, and exhibiting efficient immobilization and biosensing of protein [e.g., hemoglobin (Hb)] was prepared by intermittent microwave heating techlnique. The as-prepared composite with immobilized Hb is tested for direct electrochemistry and biosensing. The immobilized Hb at the modified electrode had a high adsorption with 32 wt% of the proteins. Moreover, the modified electrode retained its native structure, with improved interfacial electron-communication rate, and showed a good electrochemical performance to detect H2O2, as verified by Raman, UV–Vis absorption, and electrochemical impedance spectroscopies, as well as steady-state current measurements. The proposed biosensor shows a sensitivity of 9.8 µA mM−1 and responds in less than 5 s when the protein concentration ranges from 87.5 to 0.4 µM. This work provides an efficient strategy and a new promising platform for both fundamental investigation of the redox reactions mechanism and the development of third-generation biosensors.

Graphical Abstract

A unique structure and high hydrophilic nature mesoporous carbon has been obtained by a a simple and effective synthesis method. It still retains the ordered mesoporous carbon structure and the mesopore width. The composite enabled a high protein loading and a fast direct electron transfer, resulting in a much higher biocatalytic sensitivity and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartull JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. doi:10.1038/359710a0

    Article  CAS  Google Scholar 

  2. Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem Int Ed 42(27):3146–3150. doi:10.1002/anie.200351027

    Article  CAS  Google Scholar 

  3. Wang Y, Caruso F (2004) Enzyme encapsulation in nanoporous silica spheres. Chem Commun 13:1528–1529. doi:10.1039/B403871A

    Article  Google Scholar 

  4. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267(5199):865–867. doi:10.1126/science.267.5199.865

    Article  CAS  Google Scholar 

  5. Schüth F (2003) Endo- and exotemplating to create high-surface-area inorganic materials. Angewandte Chemie-International Edition 42(31):3604–3622. doi:10.1002/anie.200300593

    Article  Google Scholar 

  6. Lee D, Lee J, Kim J, Kim J, Na HB, Kim B, Shin CH, Kwak JH, Dohnalkova A, Grate JW, Hyeon T, Kim HS (2005) Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Adv Mater 17(23):2828–2833. doi:10.1002/adma.200500793

    Article  CAS  Google Scholar 

  7. Liang CD, Li ZJ, Dai S (2008) Mesoporöse Kohlenstoffmaterialien: synthese und modifizierung. Angewandte Chemie-International Edition 120(20):3754–3776. doi:10.1002/ange.200702046

    Article  Google Scholar 

  8. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958. doi:10.1039/B201013P

    Article  CAS  Google Scholar 

  9. Katherine PB, Hudson JL, Tour JM (2005) Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J Am Chem Soc 127(42):14867–14870. doi:10.1021/ja053998c

    Article  Google Scholar 

  10. Minkee C, Ryong R (2003) Ordered nanoporous polymer-carbon composites. Nat Mater 2(7):473–476. doi:10.1038/nmat923

    Article  Google Scholar 

  11. Ryoo R, Joo SH, Jun S (1999) Energetically favored formation of MCM-48 from cationic–neutral surfactant mixtures. J Phys Chem B 103(35):7435–7440. doi:10.1021/jp9911649

    Article  CAS  Google Scholar 

  12. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713. doi:10.1021/ja002261e

    Article  CAS  Google Scholar 

  13. Yu CZ, Fan J, Tian BZ, Zhao DY, Stucky GD (2002) High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater 14(23):1742–1745. doi:10.1002/1521-4095(20021203)14:23<1742:AID-ADMA1742>3.0.CO;2-3

    Article  CAS  Google Scholar 

  14. Kim TW, Park IS, Ryoo R (2003) A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angewandte Chemie 42(36):4375–4379. doi:10.1002/anie.200352224

    Article  CAS  Google Scholar 

  15. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY (2006) An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Materials Res. Part B: Applied Biomaterials 78b(2):283–290. doi:10.1002/jbm.b.30484

    Article  CAS  Google Scholar 

  16. Hrapovic S, Liu YL, Luong JHT (2007) Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite. Anal Chem 79(2):500–507. doi:10.1021/ac061528a

    Article  CAS  Google Scholar 

  17. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821. doi:10.1038/nature00785

    Article  CAS  Google Scholar 

  18. Kim J, Jia HF, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24(3):296–308. doi:10.1016/j.biotechadv.2005.11.006

    Article  CAS  Google Scholar 

  19. Feng JJ, Xu JJ, Chen HY (2007) Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly. Biosens Bioelectron 22(8):1618–1624. doi:10.1017/S0376892907003839

    Article  CAS  Google Scholar 

  20. Bajpai AK, Rajpoot M (1999) Adsorption techniques: a review. J Sci Ind Res 58(11):844–860

    Google Scholar 

  21. Dai ZH, Ju HX (2004) Direct electron transfer of protein immobilized on mesoporous molecular sieves matrix. Acta Phys Chim Sin 20(10):1262–1266. doi:10.3866/PKU.WHXB20041020

    CAS  Google Scholar 

  22. Cao DF, Hu NF (2006) Direct electron transfer between hemoglobin and pyrolytic graphite electrodes enhanced by Fe3O4 nanoparticles in their layer-by-layer self-assembly films. Biophys Chem 121(3):209–217. doi:10.1016/j.bpc.2005.11.003

    Article  CAS  Google Scholar 

  23. Wang CH, Yang C, Song YY, Gao W, Xia XH (2005) Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film & dagger. Adv Funct Mater 15(8):1267–1275. doi:10.1002/adfm.200500048

    Article  CAS  Google Scholar 

  24. Zhang L, Jiang XU, Wang EK, Dong SJ (2005) Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens Bioelectron 21(2):337–345. doi:10.1016/j.bios.2004.10.021

    Article  CAS  Google Scholar 

  25. Sun W, Wang DD, Gao RF, Jiao K (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem Commun 9(5):1159–1164. doi:10.1016/j.elecom.2007.01.003

    Article  CAS  Google Scholar 

  26. Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  27. Shan D, Han E, Xue HG, Cosnier S (2007) Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromolecules 8(10):3041–3046. doi:10.1021/bm070329d

    Article  CAS  Google Scholar 

  28. Fan J, Lei J, Wang LM, Yu CZ, Tu B, Zhao DY (2003) Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chem Commun 17(17):2140–2141. doi:10.1039/B304391F

    Article  Google Scholar 

  29. Sakamoto A, Sakurao S, Fukunaga K, Matsubara T, Ueda-Hashimoto M, Tsukamoto S, Takahashi M, Morikawa H (2004) Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitrite-dependent protein nitration. FEBS Lett 572(1–3):27–32. doi:10.1016/j.febslet.2004.07.005

    Article  CAS  Google Scholar 

  30. Zhang XJ, Ju HX, Wang J (2008) Electrochemical sensors, biosensors and their biomedical applications. Elsevier, New York

    Google Scholar 

  31. Njagi J, Andreescu S (2007) Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. Biosens Bioelectron 23(2):168–175. doi:10.1016/j.tet.2006.01.047

    Article  CAS  Google Scholar 

  32. Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18(4):591–599. doi:10.1002/adfm.200700728

    Article  CAS  Google Scholar 

  33. Xu Y, Liang J, Hu C, Wang F, Hu S, He Z (2007) A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots. J Biol Inorg Chem 12(3):421–427. doi:10.1007/s00775-006-0198-2

    Article  CAS  Google Scholar 

  34. Wang Y, Qian WP, Tan Y, Ding SH, Zhang HQ (2007) Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells. Talanta 72(3):1134–1140. doi:10.1016/j.talanta.2007.01.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (21443004), the 47th (1792) Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Chunhui planning project (Z2014083), the Ministry of Education, and the Technology Research Project of Chongqing Education Board (KJ1401217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Cao, T., Huang, H. et al. Highly hydrophilic ordered mesoporous carbon–organic polymer composite and its applications in direct electrochemistry and the possibility of biosensing1. J Appl Electrochem 46, 593–601 (2016). https://doi.org/10.1007/s10800-016-0944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0944-2

Keywords

Navigation