Skip to main content
Log in

On the use of atomic force microscopy and scaling analysis to quantify the roughness of zinc electrodeposits produced from an industrial acid sulfate electrolyte containing glue

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The morphology and roughness of zinc electrodeposits produced on an aluminum cathode from an industrial acid sulfate electrolyte have been characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), and scaling analysis. SEM and AFM images provided a topographical view of the deposit, while scaling analysis was used to determine the mechanism of surface growth and to quantify surface characteristics including the root-mean-squared (rms) roughness and periodicity. For an electrolyte with a fixed composition of additives, both the rms roughness and the width of the surface features increased with deposition time and the mechanism of surface growth was dominated by surface diffusion. However, when the deposition time was fixed but the concentration of glue in the electrolyte was increased between 3 and 60 mg L−1, a marked change in the deposition mechanism was observed. Here, small elevations in glue had minimal influence on the rms roughness but reduced the width of surface features thereby producing rougher deposits. At glue concentrations above 30 mg L−1, the scaling analysis plot changed considerably and corresponded to samples with two distinct deposit morphologies on a single surface, an observation that was not apparent from the SEM images alone. The features include large zinc islands with numerous small zinc features on their surfaces, which indicate competing mechanisms of nucleation and surface diffusion, respectively. The results show that scaling analysis offers complementary information to SEM characterization and can render additional information on the mechanism of zinc deposition under industrial conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Robinson DJ, O’Keefe TJ (1976) J Appl Electrochem 6:1–7

    Article  CAS  Google Scholar 

  2. Dhak D, Mahon M, Asselin E et al (2012) Hydrometallurgy 111–112:136–140

    Article  Google Scholar 

  3. Greul T, Gerdenitsch J, Commenda C et al (2014) Surf Coat Technol 253:8–13

    Article  CAS  Google Scholar 

  4. Raeissi K, Saatchi A, Golozar MA et al (2004) J Appl Electrochem 34:1249–1258

    Article  CAS  Google Scholar 

  5. Ping G, Pascual R, Shirkhanzadeh M et al (1995) Hydrometallurgy 37:267–281

    Article  Google Scholar 

  6. Nusen S, Yottawee N, Daopiset S et al (2012) Hydrometallurgy 113–114:143–154

    Article  Google Scholar 

  7. Pan J, Wen Y, Cheng J et al (2013) J Appl Electrochem 43:541–551

    Article  CAS  Google Scholar 

  8. Beshore AC, Flori BJ, Schade G et al (1987) J Appl Electrochem 17:765–772

    Article  CAS  Google Scholar 

  9. Dhak D, Asselin E, DiCarlo S et al (2010) ECS Trans 6:267–280

    Article  Google Scholar 

  10. Saba AE, Elsherief AE (2000) Hydrometallurgy 54:91–106

    Article  CAS  Google Scholar 

  11. Recéndiz A, González I, Nava JL (2007) Electrochim Acta 52:6880–6887

    Article  Google Scholar 

  12. Torrent-Burgués J, Guaus E (2007) J Appl Electrochem 37:643–651

    Article  Google Scholar 

  13. Díaz-Arista P, Meas Y, Ortega R et al (2005) J Appl Electrochem 35:217–227

    Article  Google Scholar 

  14. Alfantazi AM, Dreisinger DB (2003) Hydrometallurgy 69:57–72

    Article  CAS  Google Scholar 

  15. Trejo G, Ruiz H, Borges RO et al (2001) J Appl Electrochem 31:685–692

    Article  CAS  Google Scholar 

  16. Aaboubi O, Douglade J, Abenaqui X et al (2011) Electrochim Acta 56:7885–7889

    Article  CAS  Google Scholar 

  17. Nayana KO, Venkatesha TV (2011) J Electroanal Chem 663:98–107

    Article  CAS  Google Scholar 

  18. Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:738–744

    Article  CAS  Google Scholar 

  19. Wu X, Liu Z, Liu X (2014) Hydrometallurgy 141:31–35

    Article  CAS  Google Scholar 

  20. Gomes A (2006) da Silva Pereira MI. Electrochim Acta 52:863–871

    Article  CAS  Google Scholar 

  21. Alfantazi AM, Dreisinger DB (2001) J Appl Electrochem 31:641–646

    Article  CAS  Google Scholar 

  22. MacKinnon DJ, Brannen JM, Fenn PL (1987) J Appl Electrochem 17:1129–1143

    Article  CAS  Google Scholar 

  23. Alkatsev VM, Alkatsev MI, Lin VA et al (2014) Metall Nonferrous Met 55:327–330

    Article  Google Scholar 

  24. Mureşan L, Maurin G, Oniciu L et al (1996) Hydrometallurgy 43:345–354

    Article  Google Scholar 

  25. Ivanov I (2004) Hydrometallurgy 72:73–78

    Article  CAS  Google Scholar 

  26. Zhang QB, Hua YX, Dong TG et al (2009) J Appl Electrochem 39:1207–1216

    Article  CAS  Google Scholar 

  27. Yu J, Wang L, Su L et al (2003) J Electrochem Soc 150:C19–C23

    Article  CAS  Google Scholar 

  28. Boiadjieva T, Monev M, Tomandl A et al (2008) J Solid State Electrochem 5:671–677

    Google Scholar 

  29. Moats M, Guerra E, Gonzalez JA (2008) Zinc lead metallurgy. Canadian Institute of Mining, Metallurgy, and Petroleum, Montral, pp 309–314

    Google Scholar 

  30. Mackinnon DJ, Brannen JM (1977) J Appl Electrochem 7:451–459

    Article  CAS  Google Scholar 

  31. Mackinnon DJ, Brannen JM (1986) J Appl Electrochem 16:127–133

    Article  CAS  Google Scholar 

  32. Tripathy BC, Das SC, Hefter GT et al (1998) J Appl Electrochem 28:915–920

    Article  CAS  Google Scholar 

  33. Khorsand S, Raeissi K, Golozar MA (2011) J Electrochem Soc 158:D377

    Article  CAS  Google Scholar 

  34. Keist JS, Orme CA, Wright PK et al (2015) Electrochim Acta 152:161–171

    Article  CAS  Google Scholar 

  35. Ballesteros JC, Díaz-Arista P, Meas Y et al (2007) Electrochim Acta 52:3686–3696

    Article  CAS  Google Scholar 

  36. Williams RS, Tong WM (1994) Annu Rev Phys Chem 45:401–438

    Article  Google Scholar 

  37. Zhao T, Zagidulin D, Szymanski G et al (2006) Electrochim Acta 51:2255–2260

    Article  CAS  Google Scholar 

  38. Iwasaki H, Yoshinobu T (1993) Phys Rev B 48:8282–8286

    Article  CAS  Google Scholar 

  39. Iwamoto A, Yoshinobu T, Iwasaki H (1994) Phys Rev Lett 72:4025–4028

    Article  CAS  Google Scholar 

  40. Hiane M, Ebothé J (2001) Eur Phys J B 22:485–495

    Article  CAS  Google Scholar 

  41. Nikolić ND, Rakočević Z, Djurovic DR et al (2006) Russ J Electrochem 42:1121–1126

    Article  Google Scholar 

  42. Barasbasi A-L, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, New York

    Book  Google Scholar 

  43. López JM, Castro M, Gallego R (2005) Phys Rev Lett 94:1–4

    Google Scholar 

  44. Saban MD, Scott JD, Cassidy RM (1992) Metall Trans B 23:125–133

    Article  Google Scholar 

  45. Oniciu L, Mureşan L (1991) J Appl Electrochem 21:565–574

    Article  CAS  Google Scholar 

  46. Oliveira TJ, Aarão Reis FDA (2011) Phys Rev Lett 83:1–7

    Google Scholar 

  47. Oliveira TJ, Aarão Reis FDA (2007) J Appl Phys 101:1–7

    Google Scholar 

Download references

Acknowledgments

This research was supported by Teck Metals Ltd. and the Natural Sciences and Engineering Research Council Canada (NSERC Engage and Engage Plus). We would like to thank Teck for granting approval to publish this research. Furthermore, we thank technicians Greg Lakanen and Henry Ylitalo of Laurentian University for machining the aluminum cathodes and Adam Walli for helping with some electrical components. We also acknowledge the Central Analytical Facility (CAF) of Laurentian University for the SEM analysis and Presley Hlushak (Teck) for sending samples, electrolytes, and additives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Shepherd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahboob, S.S., Swanson, K., Gonzalez, J.A. et al. On the use of atomic force microscopy and scaling analysis to quantify the roughness of zinc electrodeposits produced from an industrial acid sulfate electrolyte containing glue. J Appl Electrochem 46, 539–549 (2016). https://doi.org/10.1007/s10800-016-0943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0943-3

Keywords

Navigation