Skip to main content

Advertisement

Log in

In situ growth of RuO2–TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We report a facile and controllable approach to design anodic catalysts with different surface morphologies. The RuO2–TiO2 anodes are directly grown in situ on the surface of Ti substrate under certain hydrothermal conditions. X-ray diffraction, field-emission scanning electron microscopy, energy dispersive X-ray spectra, cyclic voltammetry, and linear scanning voltammetry (LSV) were used to scrutinize the electrodes and the electrochemical activity. The experimental results indicate that solvothermal crystallization in the presence of hydrochloric acid plays a critical role in regulating the catalyst size and microstructure during the nucleation and growth process of RuO2–TiO2. The designed RuO2–TiO2/Ti anode with a nano-flowerlike structure displays significantly enhanced activity toward anodic chlorine evolution reaction (CER) compared to the other two morphology anodes. Such excellent performance of RuO2–TiO2/Ti is explained in terms of the small charge transfer resistance and the unique surface structure with more active sites to be utilized during CER.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fauvarque J (1996) The chlorine industry. Pure Appl Chem 68:1713–1720

    Article  CAS  Google Scholar 

  2. Trasatti S (2000) Electrocatalysis: understanding the success of DSA. Electrochim Acta 45:2377–2385

    Article  CAS  Google Scholar 

  3. Over H (2013) Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: a comparative review. Electrochim Acta 93:314–333

    Article  CAS  Google Scholar 

  4. Xiong K, Li L, Deng ZH, Xia MR, Chen SG, Tan SY, Peng XJ, Duan CY, Wei ZD (2012) RuO2 loaded into porous Ni as a synergistic catalyst for hydrogen production. RSC Adv 4:20521–20526

    Article  Google Scholar 

  5. Moussallem I, Jorissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38:1177–1194

    Article  CAS  Google Scholar 

  6. Beer HB (1965) Improvements in or relating to electrodes for electrolysis. British Patent, p 10

  7. Comninellis C, Vercesi GP (1991) Problems in DSA® coating deposition by thermal decomposition. J Appl Electrochem 21:136–142

    Article  CAS  Google Scholar 

  8. Gaudet J, Tavares AC, Trasatti S, Guay D (2005) Physicochemical characterization of mixed RuO2-SnO2 solid solutions. Chem Mater 17:1570–1579

    Article  CAS  Google Scholar 

  9. Lian F, Xin YL, Ma BJ, Xu LK (2015) Effect of carbon nanotubes on anodic properties of Ti/Ru-Ir-Sn oxides. J Electrochem 21:357–381

    Google Scholar 

  10. Ji L, Wang JT, Liu WB, Xue GL (2008) The effect of Ru: Sn on properties of Ru-Ir-Sn oxide anode coatings. J Electrochem 14:263–268

    CAS  Google Scholar 

  11. Petrykina V, Macounová K, Okubea M, Mukerjee S, Krtil P (2013) Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal Today 202:63–69

    Article  Google Scholar 

  12. Xiong K, Deng ZH, Li L, Chen SG, Xia MR, Zhang L, Qi XQ, Ding W, Tan SY, Wei ZD (2013) Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. J Appl Electrochem 43:847–854

    Article  CAS  Google Scholar 

  13. Takasu Y, Sugimoto W, Nishiki Y, Nakamatsu S (2010) Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes. J Appl Electrochem 40:1789–1795

    Article  CAS  Google Scholar 

  14. Wang QQ, Liu GC (2005) Progress in study on the mechanism of ruthenium –titanium anode. Chlor-Alkali Industry 12:20–27

    Google Scholar 

  15. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys Chem Chem Phys 12:283–290

    Article  CAS  Google Scholar 

  16. Exner KS, Anton J, Jacob T, Over H (2014) Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angew Chem Int Edit 53:11032–11035

    Article  CAS  Google Scholar 

  17. Karisson RKB, Hansen HA, Bligaard T, Cornell A, Pettersson LGM (2014) Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution. Electrochim Acta 146:733–740

    Article  Google Scholar 

  18. Profeti D, Lassali TAF, Olivi P (2006) Preparation of Ir0.3Sn(0.7-x)TixO2 electrodes by the polymeric precursor method: characterization and lifetime study. J Appl Electrochem 36:883–888

    Article  CAS  Google Scholar 

  19. Liang CH, Jia LN, Huang NB (2012) Preparation of Ru-Ir-Sn-Ti metal oxide anode coating by sol-gel method and study on its electrochemical properties. Surf Tech 41:26–29

    CAS  Google Scholar 

  20. Panic VV, Dekanski AB, Mitric M, Milonjic SK, Miskovic-Stankovic VB, Nikolic BZ (2010) The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties. Phys Chem Chem Phys 12:7521–7528

    Article  CAS  Google Scholar 

  21. Seifollahi M, Jafarzadeh K (2009) Stability and morphology of (Ti0.1Ru0.2Sn0.7)O2 coating on Ti in chlorakali medium. Corros Eng Sci Techn 44:362–368

    Article  CAS  Google Scholar 

  22. Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Hempelmann B (2012) RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity. Electrochim Acta 78:188–194

    Article  CAS  Google Scholar 

  23. Krishtalik LI (1981) Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes. Electrochim Acta 26:329–337

    Article  CAS  Google Scholar 

  24. Fernandez JL, de Chialvo MRG, Chialvo AC (2000) AC analysis of the Volmer-Krishtalic mechanism for the chlorine electrode reaction. Electrochem Commun 2:630–635

    Article  CAS  Google Scholar 

  25. Thomassen M, Karlsen C, Borresen B, Tunold R (2006) Kinetic investigation of the chlorine reduction reaction on electrochemically oxidised ruthenium. Electrochim Acta 51:2909–2918

    Article  CAS  Google Scholar 

  26. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  27. Ye M, Liu HY, Lin C, Lin Z (2013) Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9:312–321

    Article  CAS  Google Scholar 

  28. Ding R, Qi L, Jia M, Wang H (2013) Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4nanomaterials for high-performance electrochemical capacitors. J Appl Electrochem 43:903–910

    Article  CAS  Google Scholar 

  29. Cai J, Ye J, Chen S, Zhao X, Zhang D, Chen S, Ma Y, Jin S, Qi L (2012) Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energ Environ Sci 5:7575–7581

    Article  CAS  Google Scholar 

  30. Qu Y, Zhou W, Ren ZY, Wang GF, Jiang BJ, Fu HG (2014) Facile synthesis of porous Zn2Ti3O8 nanorods for photocatalytic overall water splitting. ChemCatChem 6:2258–2262

    Article  CAS  Google Scholar 

  31. Oliver PM, Watson GW, Kelsey ET, Parker SC (1997) Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J Mater Chem 7:563–568

    Article  CAS  Google Scholar 

  32. Huang Q, Gao L (2003) A simple route for the synthesis of rutile TiO2 nanorods. Chem Lett 32:638–639

    Article  CAS  Google Scholar 

  33. Hosono E, Fujihara S, Kakiuchi K, Imai H (2004) Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J Am Chem Soc 126:7790–7791

    Article  CAS  Google Scholar 

  34. Kong HS, Lu HY, Zhang WL, Lin HB, Huang WM (2012) Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayers. J Mater Sci 47:6709–6715

    Article  CAS  Google Scholar 

  35. Malek J, Watanabe A, Mitsuhashi T (2000) Sol-gel preparation of rutile type solid solution in TiO2-RuO2 system. J Therm Anal Calorim 60:699–705

    Article  Google Scholar 

  36. Jovanovic VM, Dekanski A, Despotov P, Nikolic BZ, Atanasoski RT (1992) The roles of the ruthenium concentration profile, the stabilizing component and the substrate on the stability of oxide coatings. J Electroanal Chem 339:147–165

    Article  CAS  Google Scholar 

  37. Evdokimov SV (2002) Electrochemical and corrosion behavior of electrode materials based on compositions of ruthenium dioxide and base-metal oxides. Russ J Electrochem 38:583–588

    Article  CAS  Google Scholar 

  38. Allam NK, Grimes CA (2007) Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 111:13028–13032

    Article  CAS  Google Scholar 

  39. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376

    Article  CAS  Google Scholar 

  40. Zhang L, Xiong K, Chen SG, Li L, Deng ZH, Wei ZD (2015) In situ growth of ruthenium oxide-nickel oxide nanorod arrays on nickel foam as a binder-free integrated cathode for hydrogen evolution. J Power Sources 274:114–120

    Article  CAS  Google Scholar 

  41. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925–13931

    Article  CAS  Google Scholar 

  42. Pu ZH, Liu Q, Asiri AM, Sun XP (2014) Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. J Appl Electrochem 44:1165–1170

    Article  CAS  Google Scholar 

  43. Alves VA, da Silva LA, Boodts JFC (1998) Electrochemical impedance spectroscopic study of dimensionally stable anode corrosion. J Appl Electrochem 28:899–905

    Article  CAS  Google Scholar 

  44. Gao J, Zhu Y, Ren Z, Li W, Quan S, Liu Y, Wang Y, Chai B (2015) Electrocatalytic performance of Ir0.5Pt0.5O2 anode and preparation of electrolyzed oxidizing water. CIESC J 66:992–1000

    CAS  Google Scholar 

  45. Lu ZY, Zhu W, Yu XY, Zhang HC, Li YJ, Sun XM, Wang XW, Wang H, Wang JM, Luo J, Lei XD, Jiang L (2014) Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Adv Mater 26:2683–2687

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially sponsored by National Basic Research Program of China (Grant No.: 2012CB720300), by National Natural Science Foundation of China (Grant Nos.: 21306232, 51072239, and 21376284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zidong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, K., Peng, L., Wang, Y. et al. In situ growth of RuO2–TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. J Appl Electrochem 46, 841–849 (2016). https://doi.org/10.1007/s10800-016-0934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0934-4

Keywords

Navigation