Skip to main content

Advertisement

Log in

Thin-film electrochemical sensor electrode for rapid evaluation of electrolytic conductivity, cyclic voltammetry, and temperature measurements

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A thin-film electrochemical sensor electrode capable of electrolytic conductivity, cyclic voltammetry, and temperature measurements of electrolyte solutions has been fabricated and characterized. The electrode fabrication and calibration is detailed, showing accuracies of \(\pm\)6 % for electrolytic conductivity measurements over the range of 0.1–100 mS·cm\(^{-1}\) and temperature measurement within \(\pm\)\(^{\circ }\)C from \(-\)60 to 95 \(^{\circ }\)C. The electrode’s capabilities are verified with standard Li-ion battery and electrochemical double-layer capacitor electrolytes, to which the measured data match well with literature values. Lastly, demonstration of the electrode’s capabilities is shown with determination of cyclic voltammetry curves and electrolytic conductivity over a range of temperatures for other electrolyte solutions. Integration of these three measurement tools into a single, low-cost, high accuracy, rapid measurement electrode can greatly simplify quantitative characterization of novel electrolytes developed in the electrochemical energy storage field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Fluorinated electrolytes for 5 v lithium-ion battery chemistry. Energy Environ Sci 6(6):1806–1810

    Article  CAS  Google Scholar 

  2. Julien C, Mauger A (2013) Review of 5-v electrodes for li-ion batteries: status and trends. Ionics 19(7):951–988

    Article  CAS  Google Scholar 

  3. Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a walden plot analysis of the maximally conductive compositions. J Phys Chem C 116(45):23915–23920

    Article  CAS  Google Scholar 

  4. Jow TR, Xu K, Borodin O, Ue M (2014) Electrolytes for lithium and lithium-ion batteries, vol 58. Springer, New York

    Book  Google Scholar 

  5. Lu M, Beguin F, Frackowiak E (2013) Supercapacitors: materials, systems and applications. Wiley, Hoboken

    Google Scholar 

  6. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer

  7. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15):2483–2498

    Article  Google Scholar 

  8. Ue M, Ida K, Mori S (1994) Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors. J Electrochem Soc 141(11):2989–2996

    Article  CAS  Google Scholar 

  9. Ue M, Takeda M, Takehara M, Mori S (1997) Electrochemical properties of quaternary ammonium salts for electrochemical capacitors. J Electrochem Soc 144(8):2684–2688

    Article  CAS  Google Scholar 

  10. Scully JR, Silverman DC, Kendig MW (1993) Electrochemical impedance: analysis and interpretation, vol 1188. ASTM International, Pennsylvania

    Book  Google Scholar 

  11. Braunstein J, Robbing G (1971) Electrolytic conductance measurements and capacitive balance. J Chem Educ 48(1):52

    Article  CAS  Google Scholar 

  12. Herzog G, Moujahid W, Twomey K, Lyons C, Ogurtsov VI (2013) On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116:26–32

    Article  CAS  Google Scholar 

  13. Freemantle M (2010) An introduction to ionic liquids. Royal Society of chemistry, London

    Google Scholar 

  14. Atkinson M (1988) Fast-response oxygen sensor for a free-fall ctd. Limnol Oceanogr 33(1):141–145

    Article  CAS  Google Scholar 

  15. Atkinson M, Thomas F, Larson N, Terrill E, Morita K, Liu C (1995) A micro-hole potentiostatic oxygen sensor for oceanic ctds. Deep Sea Res Part I 42(5):761–771

    Article  CAS  Google Scholar 

  16. Sosna M, Denuault G, Pascal RW, Prien RD, Mowlem M (2007) Development of a reliable microelectrode dissolved oxygen sensor. Sens Actuators B 123(1):344–351

    Article  CAS  Google Scholar 

  17. Boyes W (2009) Instrumentation reference book. Butterworth-Heinemann, Oxford

    Google Scholar 

  18. He D, Shannon MA, Miller NR (2005) Micromachined silicon electrolytic conductivity probes with integrated temperature sensor. Sens J IEEE 5(6):1185–1196

    Article  CAS  Google Scholar 

  19. Liptak BG (1994) Analytical instrumentation. CRC Press, Boca Raton

    Google Scholar 

  20. Brandon EJ, West WC, Smart MC, Whitcanack LD, Plett GA (2007) Extending the low temperature operational limit of double-layer capacitors. J Power Sources 170(1):225–232

    Article  CAS  Google Scholar 

  21. Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588(2):285–295

    Article  Google Scholar 

  22. Aurbach D (1999) Nonaqueous electrochemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim H-J (2004) Design of electrolyte solutions for li and li-ion batteries: a review. Electrochimica Acta 50(2):247–254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of this work by DOE ARPA-E Grant No. DE-AR0000379 and by Iwama Fund at UC San Diego and helpful discussions and fabrication assistance with the Nano3 Cleanroom staff Sean Parks and Ivan Harris at UC San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustomji, C.S., Mac, J., Choi, C. et al. Thin-film electrochemical sensor electrode for rapid evaluation of electrolytic conductivity, cyclic voltammetry, and temperature measurements. J Appl Electrochem 46, 59–67 (2016). https://doi.org/10.1007/s10800-015-0859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0859-3

Keywords

Navigation