Skip to main content
Log in

Efficient impact milling method to make porous graphitic materials for electric double layer capacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Impact milling is investigated as a rapid, one-step, solvent free, ambient temperature method to make high capacitance porous graphitic materials from natural flake graphite. The effects of impact milling-induced structural and chemical changes on the capacitance of the graphitic material are evaluated in aqueous electrolyte (1 M H2SO4). Gas adsorption analysis shows that the surface area of the graphite increases from 8 to 350 m2g−1 after 6 hours of milling. The increase in surface area is accompanied by an increase in pore volume to 0.36 cm3g−1. Mesopores account for 75 % of the pore volume. Scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy show that impact milling creates fractured material with fewer layers and less sp2 hybridized carbon than natural flake graphite. In cyclic voltammetry and electrochemical impedance spectroscopy, the impact-milled porous graphitic material displays near ideal capacitive behavior and low resistance. Galvanostatic charge/discharge shows that the milled porous graphite has gravimetric and area normalized capacitances of 55 Fg−1 and 16 μFcm−2, respectively. Taken together, the electrochemical and structural data show that solvent free, ambient temperature impact milling is a viable single-step method to create cost competitive porous graphitic material with high capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. doi:10.1038/Nmat2297

    Article  CAS  Google Scholar 

  2. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3(9):1238–1251. doi:10.1039/C0ee00004c

    Article  CAS  Google Scholar 

  3. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541. doi:10.1126/science.1200770

    Article  CAS  Google Scholar 

  4. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190. doi:10.1021/Cm049649j

    Article  CAS  Google Scholar 

  5. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146–151. doi:10.1038/Nmat2612

    Article  CAS  Google Scholar 

  6. Bleda-Martinez MJ, Macia-Agullo JA, Lozano-Castello D, Morallon E, Cazorla-Amoros D, Linares-Solano A (2005) Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 43(13):2677–2684. doi:10.1016/j.carbon.2005.05.027

    Article  CAS  Google Scholar 

  7. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518. doi:10.1016/j.carbon.2007.08.024

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531. doi:10.1039/B813846j

    Article  CAS  Google Scholar 

  9. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):6899–6905. doi:10.1021/Nn402077v

    Article  CAS  Google Scholar 

  10. Gao WJ, Wan Y, Dou YQ, Zhao DY (2011) Synthesis of partially graphitic ordered mesoporous carbons with high surface areas. Adv Energy Mater 1(1):115–123. doi:10.1002/aenm.201000009

    Article  CAS  Google Scholar 

  11. Ji LW, Lin Z, Medford AJ, Zhang XW (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14):3346–3354. doi:10.1016/j.carbon.2009.08.002

    Article  CAS  Google Scholar 

  12. Li HQ, Wang YG, Wang CX, Xia YY (2008) A competitive candidate material for aqueous supercapacitors: high surface-area graphite. J Power Sources 185(2):1557–1562. doi:10.1016/j.jpowsour.2008.08.079

    Article  CAS  Google Scholar 

  13. Ong TS, Yang H (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38(15):2077–2085. doi:10.1016/S0008-6223(00)00064-6

    Article  CAS  Google Scholar 

  14. Salver-Disma F, Du Pasquier A, Tarascon JM, Lassegues JC, Rouzaud JN (1999) Physical characterization of carbonaceous materials prepared by mechanical grinding. J Power Sources 81:291–295. doi:10.1016/S0378-7753(99)00205-0

    Article  Google Scholar 

  15. Li Q, Jiang RR, Dou YQ, Wu ZX, Huang T, Feng D, Yang JP, Yu AS, Zhao DY (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49(4):1248–1257. doi:10.1016/j.carbon.2010.11.043

    Article  CAS  Google Scholar 

  16. Matsui T, Tanaka S, Miyake Y (2013) Correlation between the capacitor performance and pore structure of ordered mesoporous carbons. Adv Powder Technol 24(4):737–742. doi:10.1016/j.apt.2013.03.003

    Article  CAS  Google Scholar 

  17. Tanaka S, Doi A, Matsui T, Miyake Y (2013) Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. J Power Sources 228:24–31. doi:10.1016/j.jpowsour.2012.11.114

    Article  CAS  Google Scholar 

  18. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785. doi:10.1039/B618139m

    Article  CAS  Google Scholar 

  19. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  20. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950. doi:10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  21. Yuan DS, Zeng JH, Chen JX, Liu YL (2009) Highly ordered mesoporous carbon synthesized via in situ template for supercapacitors. Int J Electrochem Sci 4(4):562–570

    CAS  Google Scholar 

  22. Zhi J, Zhao W, Liu XY, Chen AR, Liu ZQ, Huang FQ (2014) Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv Funct Mater 24(14):2013–2019. doi:10.1002/adfm.201303082

    Article  CAS  Google Scholar 

  23. Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H (2012) Graphene-based electrodes. Adv Mater 24(45):5979–6004. doi:10.1002/adma.201201587

    Article  CAS  Google Scholar 

  24. Murali S, Dreyer DR, Valle-Vigon P, Stoller MD, Zhu YW, Morales C, Fuertes AB, Bielawski CW, Ruoff RS (2011) Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Phys Chem Chem Phys 13(7):2652–2655. doi:10.1039/C0cp02557g

    Article  CAS  Google Scholar 

  25. Chen JF, Lang ZL, Xu Q, Zhang JN, Fu JW, Chen ZM (2013) A novel method to fabricate discrete porous carbon hemispheres and their electrochemical properties as supercapacitors. Phys Chem Chem Phys 15(41):17786–17792. doi:10.1039/C3cp52736k

    Article  CAS  Google Scholar 

  26. Fang B, Kim JH, Kim MS, Bonakdarpour A, Lam A, Wilkinson DP, Yu JS (2012) Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. J Mater Chem 22(36):19031–19038. doi:10.1039/C2jm33435f

    Article  CAS  Google Scholar 

  27. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State 26(3):145–249. doi:10.1080/20014091104189

    Article  CAS  Google Scholar 

  28. Sevilla M, Alvarez S, Centeno TA, Fuertes AB, Stoeckli F (2007) Performance of templated mesoporous carbons in supercapacitors. Electrochim Acta 52(9):3207–3215. doi:10.1016/j.electacta.2006.09.063

    Article  CAS  Google Scholar 

  29. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44(2):216–224. doi:10.1016/j.carbon.2005.07.029

    Article  CAS  Google Scholar 

  30. Chmiola J, Yushin G, Dash R, Gogotsi Y (2006) Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources 158(1):765–772. doi:10.1016/j.jpowsour.2005.09.008

    Article  CAS  Google Scholar 

  31. Chevallier F, Aymard L, Tarascon JM (2001) Influence of oxygen and hydrogen milling atmospheres on the electrochemical properties of ballmilled graphite. J Electrochem Soc 148(11):A1216–A1224. doi:10.1149/1.1405800

    Article  CAS  Google Scholar 

  32. Alcantara R, Lavela P, Ortiz GF, Tirado JL, Menendez R, Santamaria R, Jimenez-Mateos JM (2003) Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon 41(15):3003–3013. doi:10.1016/S0008-6223(03)00432-9

    Article  CAS  Google Scholar 

  33. Xing T, Sunarso J, Yang WR, Yin YB, Glushenkov AM, Li LH, Howlett PC, Chen Y (2013) Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5(17):7970–7976. doi:10.1039/C3nr02328a

    Article  CAS  Google Scholar 

  34. Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai LM, Baek JB (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393. doi:10.1021/Ja3091643

    Article  CAS  Google Scholar 

  35. Wang YM, Cao JY, Zhou Y, Ouyang JH, Jia DC, Guo LX (2012) Ball-milled graphite as an electrode material for high voltage supercapacitor in neutral aqueous electrolyte. J Electrochem Soc 159(5):A579–A583. doi:10.1149/2.071205jes

    Article  CAS  Google Scholar 

  36. Gomibuchi E, Ichikawa T, Kimura K, Isobe S, Nabeta K, Fujii H (2006) Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere. Carbon 44(5):983–988. doi:10.1016/j.carbon.2005.10.006

    Article  CAS  Google Scholar 

  37. Nandhini R, Mini PA, Avinash B, Nair SV, Subramanian KRV (2012) Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling. Mater Lett 87:165–168. doi:10.1016/j.matlet.2012.07.092

    Article  CAS  Google Scholar 

  38. Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47(4):355–414. doi:10.1016/S0079-6425(01)00002-0

    Article  CAS  Google Scholar 

  39. Takacs L, McHenry JS (2006) Temperature of the milling balls in shaker and planetary mills. J Mater Sci 41(16):5246–5249. doi:10.1007/s10853-006-0312-4

    Article  CAS  Google Scholar 

  40. Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42(8–9):1713–1721. doi:10.1016/j.carbon.2004.03.005

    Article  CAS  Google Scholar 

  41. Seredych M, Bandosz TJ (2012) Evaluation of GO/MnO2 composites as supercapacitors in neutral electrolytes: role of graphite oxide oxidation level. J Mater Chem 22(44):23525–23533. doi:10.1039/C2jm34294d

    Article  CAS  Google Scholar 

  42. Zheng C, Qi L, Yoshio M, Wang HY (2010) Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors. J Power Sources 195(13):4406–4409. doi:10.1016/j.jpowsour.2010.01.041

    Article  CAS  Google Scholar 

  43. Yoo HD, Jang JH, Ryu JH, Park Y, Oh SM (2014) Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors. J Power Sources 267:411–420. doi:10.1016/j.jpowsour.2014.05.058

    Article  CAS  Google Scholar 

  44. Zhang LL, Zhao X, Stoller MD, Zhu YW, Ji HX, Murali S, Wu YP, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812. doi:10.1021/Nl203903z

    Article  CAS  Google Scholar 

  45. Fukunaga T, Nagano K, Mizutani U, Wakayama H, Fukushima Y (1998) Structural change of graphite subjected to mechanical milling. J Non-Cryst Solids 232:416–420. doi:10.1016/S0022-3093(98)00495-5

    Article  Google Scholar 

  46. Fang BZ, Bonakdarpour A, Kim MS, Kim JH, Wilkinson DP, Yu JS (2013) Multimodal porous carbon as a highly efficient electrode material in an electric double layer capacitor. Microporous Mesoporous Mater 182:1–7. doi:10.1016/j.micromeso.2013.08.007

    Article  CAS  Google Scholar 

  47. Ward RJ, Wood BJ (1992) A comparison of experimental and theoretically derived sensitivity factors for XPS. Surf Interface Anal 18(9):679–684. doi:10.1002/sia.740180908

    Article  CAS  Google Scholar 

  48. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294–1301. doi:10.1039/C0EE00074D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York under project # TRADB-45-123. Additional support is provided by the NY State Graduate Research and Teaching Initiative. The authors thank the College of Staten Island Advanced Imaging Facility and thank Prof. William L’Amoreoux and Dr. Michael Bucaro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Farjami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farjami, E., Al-Sharab, J.F., Al-Kamal, A.K. et al. Efficient impact milling method to make porous graphitic materials for electric double layer capacitors. J Appl Electrochem 45, 385–395 (2015). https://doi.org/10.1007/s10800-015-0801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0801-8

Keywords

Navigation