Skip to main content
Log in

Electrochemical copper (II) sensor based on chitosan covered gold nanoparticles

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study outlines a new sensing platform based on glassy carbon electrodes modified by gold nanoparticles (AuNPs) for the determination of heavy metal. A glassy carbon electrode was modified by chitosan stabilized AuNPs. AuNPs were prepared by reducing gold salt with a polysaccharide chitosan. Here, chitosan acted as a reducing/stabilizing agent. The AuNPs were characterized with UV–Visible absorption spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Chitosan covered AuNPs were immobilized on the glassy carbon electrode for the determination of Cu (II) in aqueous solutions. The electrochemical determination of Cu (II) ions was performed using the differential pulse voltammetry technique. Some parameters for Cu (II) determination, such as pH, preconcentration time and electrolysis potential of Cu (II), were optimized. The detection limit was calculated as 5 × 10−9 mol L−1 by means of the 3:1 current-to-noise ratio. The interference of Cr(III), Fe(II), Ni(II), Pb(II), Mg(II), Zn(II), Ba(II) ions was investigated and showed a negligible effect on the electrode response. Recovery studies were carried out using tap water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Homagai PL, Ghimire KN, Inoue K (2010) Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresource Technol 101:2067–2069

    Article  CAS  Google Scholar 

  2. Mashhadizadeh MH, Khani H, Foroumadi A, Sagharichi P (2010) Comparative studies of mercapto thiadiazoles self-assembled on gold nanoparticle as ionophores for Cu(II) carbon paste sensors. Anal Chim Acta 665:208–214

    Article  CAS  Google Scholar 

  3. Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251:90–95

    Article  CAS  Google Scholar 

  4. Ning XA, Zhou Y, Liu JY, Wang JH, Li L, Ma XG (2011) Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry. Spectrosc Spect Anal 31(9):2565–2568

    CAS  Google Scholar 

  5. Song WJ, Wang XW, Ding JW, Zhang J, Zhang RM, Qin W (2012) Electrochemical sensing system for determination of heavy metals in seawater. Chinese J Anal Chem 40(5):670–674

    Article  CAS  Google Scholar 

  6. Thomas O, Burgess C (2007) UV–Vis spectrometry of water and wastewater in techniques and instrumentation in analytical chemistry, vol 27. Elsevier, UK

    Google Scholar 

  7. Dayou F, Yuan D (2007) Spectrophotometric determination of trace copper in water samples with thiomichlersketone. Spectrochim Acta A 66:434–437

    Article  CAS  Google Scholar 

  8. Cotton DH, Jenkins DR (1970) The determination of very low concentrations of copper, iron and lead in hydrocarbon fuels by atomic fluorescence spectrometry. Spectrochim Acta B 25:283–288

    Article  CAS  Google Scholar 

  9. Teixeira LSG, Rocha RBS, Sobrinho EV, Guimarães PRB, Pontes LAM, Teixeira JSR (2007) Simultaneous determination of copper and iron in automotive gasoline by X-ray fluorescence after pre-concentration on cellulose paper. Talanta 72:1073–1076

    Article  CAS  Google Scholar 

  10. Trindade JM, Martiniano LC, Gonçalves VRA, Souza AG, Marques ALB, Baugis GL, Fonseca TCO, Song C, Zhang J, Marques EP (2012) Anodic stripping voltammetry coupled with design of experiments for simultaneous determination of Zn2+, Cu2+, Pb2+, and Cd2+ in gasoline. Fuel 91:26–32

    Article  CAS  Google Scholar 

  11. Wang J (1985) Stripping analysis: principles, instrumentation and application. VCH, Deerfield Beach

    Google Scholar 

  12. Abollino O, Giacomino A, Malandrino M, Piscionieri G, Mentasti E (2008) Determination of mercury by anodic stripping voltammetry with a gold nanoparticle modified glassy carbon electrode. Electroanalysis 20:75–83

    Article  CAS  Google Scholar 

  13. Ciftci H, Oktem Z (2011) Voltammetric determination of Hg(II) at poly(2-aminothiazole) modified platinum electrode. Fresen Environ Bull 20:924–928

    CAS  Google Scholar 

  14. Sudkate C, Orawon C, Tadao S, Norio T, Weena S (2013) Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1,10-phenanthroline. Talanta 108:1–6

    Article  CAS  Google Scholar 

  15. Xu-Cheng F, Ju W, Jun L, Cheng-Gen X, Yi-Shu L, Yu Z, Jin-Huai L (2013) Electrochemical determination of trace copper(II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters. Sens Actuators B 182:382–389

    Article  CAS  Google Scholar 

  16. Zhou B, Hermans S, Somorjai GA (eds) (2004) Nanotechnology in catalysis. Kluwer Academic/Plenum, New York

    Google Scholar 

  17. Maye MM, Luo J, Han L, Kariuki NN, Zhong CJ (2003) Synthesis, processing, assembly and activation of core–shell structured gold nanoparticle catalysts. Gold Bull 36:75–82

    Article  CAS  Google Scholar 

  18. Wieckowski A, Savinova ER, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York

    Google Scholar 

  19. Huang L, Zhai M, Peng J, Xu L, Li J, Wei G (2007) Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions. J Colloid Interface Sci 316:398–404

    Article  CAS  Google Scholar 

  20. Misra TK, Chen TS, Liu CY (2006) Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. J Colloid Interface Sci 297:584–588

    Article  CAS  Google Scholar 

  21. Huang HZ, Qiang Y, Yang XR (2005) Morphology study of gold–chitosan nanocomposites. J Colloid Interface Sci 282:26–31

    Article  CAS  Google Scholar 

  22. Huang HZ, Yang XR (2003) Chitosan mediated assembly of gold nanoparticles multilayer. Colloid Surf A 226:77–86

    Article  CAS  Google Scholar 

  23. Xu Q, Mao C, Liu NN, Zhu JJ, Sheng J (2006) Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan–gold nanoparticle nanocomposite. Biosens Bioelectron 22:768–773

    Article  CAS  Google Scholar 

  24. Boca SC, Potara M, Toderas F, Stephan O, Baldeck PL, Astile S (2011) Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese Hamster ovary cells. Mater Sci Eng C 31:184–189

    Article  CAS  Google Scholar 

  25. Jin Y, Li Z, Hu L, Shi X, Guan W, Du Y (2013) Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym 91:152–156

    Article  CAS  Google Scholar 

  26. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426

    Article  CAS  Google Scholar 

  27. Potara M, Maniu D, Astilean S (2008) The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology 20:315602–315609

    Article  CAS  Google Scholar 

  28. Liz-Marzan LM (2004) Nanometals: formation and color. Mater Today 7:26–31

    Article  CAS  Google Scholar 

  29. Evans DF, Wennerstrom H (1999) The colloidal domain. Wiley, New York

    Google Scholar 

  30. Joshi H, Shirude PS, Bansal V, Ganesh KN, Sastry M (2004) Isothermal titration calorimetry studies on the binding amino acid to gold nanoparticles. J Phys Chem B 108:11535–11540

    Article  CAS  Google Scholar 

  31. Nunthanid J, Puttipipatkhachorn S, Yamamato K, Peck GE (2001) Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 27:143–157

    Article  CAS  Google Scholar 

  32. Ritthidej GC, Phaechamud T, Koizumi T (2002) Moist heat treatment on physicochemical change of chitosan salt films. Int J Pharm 232:11–22

    Article  CAS  Google Scholar 

  33. Boulet JC, Williams P, Doco T (2007) A Fourier transform infrared spectroscopy study of wine polysaccharides. Carbohydr Polym 69:79–85

    Article  CAS  Google Scholar 

  34. Huang H, Yang X (2004) Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules 5:2340–2346

    Article  CAS  Google Scholar 

  35. Randall JM, Randall VG, McDonald GM, Young RN, Masri MS (1979) Removal of trace quantities of nickel from solution. J Appl Polym Sci 23:727–732

    Article  CAS  Google Scholar 

  36. McKay G, Blair HS, Findon A (1989) Equilibrium studies for the sorption of metal ions onto chitosan. Indian J Chem A 28:356–360

    Google Scholar 

  37. Peniche-Covas C, Alvarez LW, Argüelles-Monal W (1992) The adsorption of mercuric ions by chitosan. J Appl Polym Sci 46:1147–1150

    Article  CAS  Google Scholar 

  38. Vasconcelos MT, Leal MF, Soares HMVM (1996) Influence of the ratio copper(II) to ligand concentrations and the nature of entering and leaving ligands on the lability of copper(II) complexes. Anal Chim Acta 330:273–281

    Article  CAS  Google Scholar 

  39. Oztekin Y, Tok M, Nalvuran H, Kiyak S, Gover T, Yazicigil Z, Ramanaviciene A, Ramanavicius A (2010) Electrochemical modification of glassy carbon electrode by poly-4-nitroaniline and its application for determination of copper (II). Electrochim Acta 56(1):387–395

    Article  CAS  Google Scholar 

  40. Bai Y, Ruan X, Mo J, Xie Y (1998) Potentiometric stripping analysis of copper using cysteine modified mercury film electrode. Anal Chim Acta 373(1):39–46

    Article  CAS  Google Scholar 

  41. Bonfil Y, Brand M, Kirowa-Eisner E (1999) Determination of sub-μg l−1 concentrations of copper by anodic stripping voltammetry at the gold electrode. Anal Chim Acta 387(1):85–95

    Article  CAS  Google Scholar 

  42. Oztekin Y, Yazicigil Z, Ramanaviciene A, Ramanavicius A (2011) Polyphenol-modified glassy carbon electrodes for copper detection. Sens Actuators B 152(1):37–48

    Article  CAS  Google Scholar 

  43. Lin M, Cho M, Choe WS, Son Y, Lee Y (2009) Electrochemical detection of copper ion using a modified copolythiophene electrode. Electrochim Acta 54(27):7012–7017

    Article  CAS  Google Scholar 

  44. Oztekin Y, Ramanaviciene A, Ramanavicius A (2011) Electrochemical copper (II) sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate. Sens Actuators B 155(2):612–617

    Article  CAS  Google Scholar 

  45. Betelu S, Vautrin-Ul C, Chaussé A (2009) Novel 4-carboxyphenyl-grafted screen-printed electrode for trace Cu (II) determination. Electrochem Commun 11(2):383–386

    Article  CAS  Google Scholar 

  46. Niu LM, Luo HQ, Li NB, Song L (2007) Electrochemical detection of copper (II) at a gold electrode modified with a self-assembled monolayer of penicillamine. J Anal Chem 62(5):470–474

    Article  CAS  Google Scholar 

  47. Jiang YN, Luo HQ, Li NB (2006) Determination of copper (II) by anodic stripping voltammetry at a 2, 5-dimercapto-1, 3, 4-thiadiazol self-assembled monolayer-based gold electrode. Anal Sci 22(8):1079–1083

    Article  CAS  Google Scholar 

  48. Rahman MA, Won MS, Shim YB (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75(5):1123–1129

    Article  CAS  Google Scholar 

  49. Zeng B, Ding X, Zhao F, Yang Y (2002) Electrochemical determination of copper (II) by gold electrodes modified with N-acetyl-l-cysteine. Anal Lett 35(14):2245–2258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Kırıkkale University. Research fund through grant no: 2013/86.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Çiftçi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çiftçi, H., Tamer, U., Metin, A.Ü. et al. Electrochemical copper (II) sensor based on chitosan covered gold nanoparticles. J Appl Electrochem 44, 563–571 (2014). https://doi.org/10.1007/s10800-014-0676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0676-0

Keywords

Navigation