Skip to main content

Advertisement

Log in

Ni-doped TiO2 hollow spheres as electrocatalysts in water electrolysis for hydrogen and oxygen production

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work represented the electrocatalytic properties of Ni-doped titania hollow sphere materials in hydrogen and oxygen evolution during water electrolysis from acidic media. Titania hollow sphere particles were synthesized using poly(styrene-methacrylic acid) latex as template material, and various amount of nickel were doped over the sphere using nickel (II) sulfate as the precursor of nickel. The presence of rutile TiO2 and NiO phases were revealed during XRD analysis, indicating the critical growth of nickel on the surface of the hollow sphere catalysts. BET surface area results also shown the 166.76 m2 g−1 value for 30 wt% Ni/TiO2 hollow sphere sample. The SEM and TEM images were confirmed the hollow sphere structure of the catalysts with diameter of 0.8–0.9 μm. The cyclic voltammetric studies proved the presence of both hydrogen and oxygen evolution peaks for all the hollow sphere samples. The anodic peak current density value, which usually represents the oxygen evolution phenomenon, was revealed as 13 mA cm−2 for 25 wt% Ni-loaded sample; whereas, the hydrogen evolution peak was most intense for 30 wt% Ni/TiO2 material with cathodic peak current density of 32 mA cm−2. The average value of −1.42 were determined as the reaction order of the system irrespective of the nickel loading and heating duration in the synthesis of hollow sphere materials. During photocatalytic water splitting, 30 wt% Ni/TiO2 hollow sphere sample yielded the highest amount of hydrogen in all irradiation time span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Patterson J, Ramsey B, Harrison D. http://dspace.brunel.ac.uk/bitstream

  2. Friedland R, Speranza AJ (1999) DOE Hydrogen program review. In: Proceedings of the 1999 U.S., vol 1. National Renewable Energy Laboratory No. NREL/CP-570-26938 Golden, Colorado

  3. Peavey M (2003) Fuel from water energy impendence with hydrogen. Merit Products, USA

    Google Scholar 

  4. Chandler GK, Genders JD, Pletcher D (1997) Platinum Metals Rev 41:54–63

    CAS  Google Scholar 

  5. Reinhardt D, Krieck S, Meyer S (2006) Electrochim Acta 52:825–830

    Article  CAS  Google Scholar 

  6. Bamwenda GR, Ueisigi T, Abe Y, Sayama K, Arakwa H (2001) Appl Catal A 205:117–128

    Article  CAS  Google Scholar 

  7. Contescu C, Popa VT, Miller JB, Ko EI, Schwarz JA (1996) Chem Eng J Biochem Eng J 64:265–272

    Article  CAS  Google Scholar 

  8. Odobel F, Blart E, Lagree M, Villieras, Boujtita N, Murr E, Caramori S, Bignozzi CA (2003) J Mater Chem 13:502–510

    Article  CAS  Google Scholar 

  9. Pessoa CA, Gushikem Y, Nakagaki S (2002) Electroanalysis 14:1072–1076

    Article  CAS  Google Scholar 

  10. Pessoa CA, Gushikem Y (1999) J Electroanal Chem 477:158–163

    Article  CAS  Google Scholar 

  11. Yoshihiko K, Yoshikawa H, Agwa K, Murayama M, Mori T, Sunada K, Bandow S, Ijima S (2008) Langmuir 24:547–550

    Article  Google Scholar 

  12. An K, Lee N, Park J, Kim CS, Hwang Y, Park JG, Kim JY, Park JH, Han JM, Yu J, Hyeon T (2006) J Am Chem Soc 128:9753–9760

    Article  CAS  Google Scholar 

  13. Graf C, Dembski S, Hofmann A, Ruhl E (2006) Langmuir 22:5604–5610

    Article  CAS  Google Scholar 

  14. Zhu YZ, Chen HB, Wang YP, Li ZH, Cao YL, Chi YB (2006) Chem Lett 35:756–757

    Article  CAS  Google Scholar 

  15. Fujiwara M, Shiokawa K, Hayashi K, Morigaki K, Nakahara Y, Biomed J (2007) Mater Res A 81:103–112

    Article  Google Scholar 

  16. Shiho H, Kawahashi N (2000) J Colloid Interface Sci 226:91–97

    Article  CAS  Google Scholar 

  17. Kawahashi N, Shiho H (2000) J Mater Chem 10:2294–2297

    Article  CAS  Google Scholar 

  18. Yoon SB, Kim JY, Kim JH, Park SG, Kim JY, Lee CW, Yu JS (2000) Curr Appl Phys 6:1059–1063

    Article  Google Scholar 

  19. Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) J Hazard Mater 178:517–521

    Article  CAS  Google Scholar 

  20. Chattopadhyay J, Kim HR, Moon SB, Pak D (2008) Int J Hydrogen Energy 33:3270–3280

    Article  CAS  Google Scholar 

  21. Son JE, Chattopadhyay J, Pak D (2010) Int J Hydrogen Energy 35:420–427

    Article  CAS  Google Scholar 

  22. Tucker SH (1950) J Chem Ed 27:489

    Article  CAS  Google Scholar 

  23. Changwei X, Yonghong H, Rong J, Jiang SP, Yingliang L (2007) Electrochem Commun 9:2009–2012

    Article  Google Scholar 

  24. Nishida R, Kakinuma K, Nishino H, Kamino T, Yamashita H, Watanabe M, Uchida H (2009) Solid State Ionics 180:968–972

    Article  CAS  Google Scholar 

  25. Mahesh RA, Jayaganthan R, Prakash S, Chawla V, Chandra R (2009) Mater Chem Phys 114:629–635

    Article  CAS  Google Scholar 

  26. Kim H, Eom Y, Lee T, Shul Y (2008) Mater Chem Phys 108:154–159

    Article  CAS  Google Scholar 

  27. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New York

    Google Scholar 

  28. Woods R (1976) In: Bard A (ed) Chemisorption at electrodes in electroanalytical chemistry, vol 9. Marcel Dekker, New York

    Google Scholar 

  29. Czerwinski A (1994) J Electroanal Chem 379:487–493

    Article  Google Scholar 

  30. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  31. Niklasson GA, Granqvist CG (2007) J Mater Sci 17:127–156

    CAS  Google Scholar 

  32. Lide DR (2000) CRC handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton

    Google Scholar 

  33. Lunkenheimer P, Loidl A, Ottermann CR, Bange K (1991) Phys Rev B 44:5927–5930

    Article  CAS  Google Scholar 

  34. Trasatti S (1990). In: Wendt H (ed) Electrochemical hydrogen technologies Elsevier, Amsterdam, p 104

  35. Hrussanova A, Guerrini E, Trasatti S (2004) J Electroanal Chem 564:151–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayeeta Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, J., Srivastava, R. & Srivastava, P.K. Ni-doped TiO2 hollow spheres as electrocatalysts in water electrolysis for hydrogen and oxygen production. J Appl Electrochem 43, 279–287 (2013). https://doi.org/10.1007/s10800-012-0509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0509-y

Keywords

Navigation