Skip to main content
Log in

Nano SIMS characterization of boron- and aluminum-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary ion batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The LiNi1/3Co1/3Mn1/3O2 powders required for the present study, obtained by coprecipitation method has been surface coated with boron and aluminum. The morphology and crystal structure of powders have been characterized using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy techniques. The elemental distribution of the coated samples analyzed by transmission electron microscopy images and nano secondary ion mass spectrometry indicates a thin uniform layer of [B, Al]2O3 on the surface of spherical LiNi1/3Co1/3Mn1/3O2. The surface-modified LiNi1/3Co1/3Mn1/3O2 has been explored as a cathode material for lithium secondary ion battery applications. The electrochemical charge–discharge results reveal that the capacity retention rate of coated LiNi1/3Co1/3Mn1/3O2 after 40 cycles at 1 C rate maintains 93% of the initial discharge capacity while the rate of bare LiNi1/3Co1/3Mn1/3O2 maintains only 88%. It is noticed that the small amounts of boron and aluminum coatings on the surface of LiNi1/3Co1/3Mn1/3O2 can significantly improve the electrochemical properties of electrode materials because of the suppression of reaction between the cathode and the electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scrosati B (1995) Nature 373:557

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  3. Guyomard D (2000) New trends in electrochemical technology: energy storage systems for electronics. Gordon & Breach Science Publishers, New York

    Google Scholar 

  4. Wakihara W, Yamamoto O (1998) Lithium ion batteries—fundamentals and performance. Kodansha-Wiley-VCH, Weinheim

    Google Scholar 

  5. Bruce PG, Scrosti B, Tarascon JM (2008) Angew Chem Int Ed 47:2930

    Article  CAS  Google Scholar 

  6. Antolini E (2004) Solid State Ionics 170:159

    Article  CAS  Google Scholar 

  7. Jeong ED, Kim HJ, Ahn CW, Ha MG, Hong TE, Kim HG, Jin JS, Bae JS, Hong KS, Kim YS, Kim HJ, Doh CH, Yang HS (2009) J Nanosic Nanotechnol 9:4467

    Article  CAS  Google Scholar 

  8. Ahn CW, Ha MG, Hong KS, Lee DJ, Doh CH, Doh KY, Na JM, Song BH, Jeon HM, Cho YG, Yang HS, Jeong ED (2010) Defect Diffus Forum 297:906

    Article  Google Scholar 

  9. Hong KS, Yu SM, Ha MG, Ahn CW, Hong TE, Jin JS, Kim HG, Jeong ED, Kim YS, Kim HJ, Doh CH, Yang HS, Jung H (2009) Bull Korean Chem Soc 30:1719

    Article  CAS  Google Scholar 

  10. Cho PJ, Jeong ED, Shim YB (1998) Bull Korean Chem Soc 19:39

    CAS  Google Scholar 

  11. Jeong ED, Won MS, Shim YB (1998) J Power Sources 70:70

    Article  CAS  Google Scholar 

  12. Stewart SG, Srinivasan V, Newman J (2008) J Electrochem Soc 155:A664

    Article  CAS  Google Scholar 

  13. He SS, Ma ZF, Liao XZ, Jiang Y (2007) J Power Sources 163:1053

    Article  CAS  Google Scholar 

  14. Martha SK, Markevich E, Burgel V, Salitra G, Zingigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D, Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M, Kovacheva D, Saliyski N (2009) J Power Sources 189:288

    Article  CAS  Google Scholar 

  15. Martha SK, Sclar H, Framowitz ZS, Kovacheva D, Saliyski N, Gofer Y, Sharon P, Golik E, Markovsky B, Aurbach D (2009) J Power Sources 189:248

    Article  CAS  Google Scholar 

  16. Ohzuku T, Makimura Y (2001) Chem Lett 7:642

    Article  Google Scholar 

  17. Yabuuchi N, Ohzuku T (2003) J Power Sources 119:171

    Article  Google Scholar 

  18. Kim J, Park C, Sun Y (2003) Solid State Ionics 164:43

    Article  CAS  Google Scholar 

  19. Huang SH, Wen ZY, Zhang JC, Gu ZH, Xu XH (2006) Solid State Ionics 177:851

    Article  CAS  Google Scholar 

  20. Dominko R, Gaberscek M, Bele U, Mihailovic D, Jamnik J (2007) J Eur Ceram Soc 27:909

    Article  CAS  Google Scholar 

  21. Liu H, Feng Y, Wang K, Xie JY (2008) J Phys Chem Solids 69:2037

    Article  CAS  Google Scholar 

  22. Huang JJ, Jiang ZY (2008) Electrochim Acta 53:7756

    Article  CAS  Google Scholar 

  23. Yang LZ, Gao LJ (2009) J Alloys Comp 485:93

    Article  CAS  Google Scholar 

  24. Wolfenstine J, Lee U, Allen JL (2006) J. Power Sources 154:287

    Article  CAS  Google Scholar 

  25. Liu DT, Quyang CY, Shu J, Jiang J, Wang ZX, Chen LQ (2006) Phys Stat Sol (b) 243:1935

    Google Scholar 

  26. Hao YJ, Lai QY, Lu JZ, Ji XY (2007) Ionics 13:369

    Article  CAS  Google Scholar 

  27. Kubiak P, Garcia A, Womes M, Aldon L, Olivier-Fourcade J, Lippens PE, Jumas JC (2003) J Power Sources 119:626

    Article  Google Scholar 

  28. Huang SH, Wen ZY, Gu ZH, Zhu XJ (2005) Electrochim Acta 50:4057

    Article  CAS  Google Scholar 

  29. Huang SH, Wen ZY, Zhu XJ, Lin ZX (2007) J Power Sources 165:408

    Article  CAS  Google Scholar 

  30. Yu HY, Zhang XF, Jalbout AF, Yan XD, Pan XM, Xie HM, Wang RS (2008) Electrochim Acta 53:4200

    Article  CAS  Google Scholar 

  31. Tabuchi T, Yasuda H, Yamachi M (2006) J Power Sources 162:813

    Article  CAS  Google Scholar 

  32. Wolfenstine J, Allen JL (2008) J Power Sources 180:582

    Article  CAS  Google Scholar 

  33. Wu Y, Manthiram A (2009) Solid State Ionics 180:50

    Article  CAS  Google Scholar 

  34. Liu J, Manthiram A (2009) Chem Mater 21:1695

    Article  CAS  Google Scholar 

  35. Lee MH, Kang YJ, Myung ST, Sun YK (2004) Electrochem Acta 50:939

    Article  CAS  Google Scholar 

  36. Cho TH, Park SM, Yoshio M (2004) Chem Lett 700

  37. Huang ZD, Liu XM, Zhang B, Oh S, Ma PC, Kim JK (2011) Scripta Mater 64:122

    Article  CAS  Google Scholar 

  38. Kim GH, Myung ST, Kim HS, Sun YK (2006) Electrochim Acta 51:2447

    Article  CAS  Google Scholar 

  39. Chang Z, Chen Z, Wu F, Tang H, Zhu Z, Yuan ZZ, Wang H (2008) Electochim Acta 53:5927

    Article  CAS  Google Scholar 

  40. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Powder Technol 198:373

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by KBSI Grant (T31601) to T. E. Hong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Eun Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, T.E., Jeong, E.D., Baek, S.R. et al. Nano SIMS characterization of boron- and aluminum-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary ion batteries. J Appl Electrochem 42, 41–46 (2012). https://doi.org/10.1007/s10800-011-0369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0369-x

Keywords

Navigation